Dark matter (DM) simplified models are by now commonly used by the ATLAS and CMS Collaborations to interpret searches for missing transverse energy (ETmiss). The coherent use of these models sharpened the LHC DM search program, especially in the presentation of its results and their comparison to DM direct-detection (DD) and indirect-detection (ID) experiments. However, the community has been aware of the limitations of the DM simplified models, in particular the lack of theoretical consistency of some of them and their restricted phenomenology leading to the relevance of only a small subset of ETmiss signatures. This document from the LHC Dark Matter Working Group identifies an example of a next-generation DM model, called 2HDM+a, that provides the simplest theoretically consistent extension of the DM pseudoscalar simplified model. A comprehensive study of the phenomenology of the 2HDM+a model is presented, including a discussion of the rich and intricate pattern of mono-X signatures and the relevance of other DM as well as non-DM experiments. Based on our discussions, a set of recommended scans are proposed to explore the parameter space of the 2HDM+a model through LHC searches. The exclusion limits obtained from the proposed scans can be consistently compared to the constraints on the 2HDM+a model that derive from DD, ID and the DM relic density.

LHC Dark Matter Working Group: Next-generation spin-0 dark matter models / Abe, Tomohiro; Afik, Yoav; Albert, Andreas; Anelli, Christopher R.; Barak, Liron; Bauer, Martin; Behr, J. Katharina; Bell, Nicole F.; Boveia, Antonio; Brandt, Oleg; Busoni, Giorgio; Carpenter, Linda M.; Chen, Yu-Heng; Doglioni, Caterina; Elliot, Alison; Fujiwara, Motoko; Genest, Marie-Helene; Gerosa, Raffaele; Gori, Stefania; Gramling, Johanna; Grohsjean, Alexander; Gustavino, Giuliano; Hahn, Kristian; Haisch, Ulrich; Henkelmann, Lars; Hisano, Junji; Huitfeldt, Anders; Ippolito, Valerio; Kahlhoefer, Felix; Landsberg, Greg; Lowette, Steven; Maier, Benedikt; Maltoni, Fabio; Muehlleitner, Margarete; No, Jose M.; Pani, Priscilla; Polesello, Giacomo; Price, Darren D.; Robens, Tania; Rovelli, Giulia; Rozen, Yoram; Sanderson, Isaac W.; Santos, Rui; Sevova, Stanislava; Sperka, David; Sung, Kevin; Tait, Tim M. P.; Terashi, Koji; Ungaro, Francesca C.; Vryonidou, Eleni; Yu, Shin-Shan; Wu, Sau Lan; Zhou, Chen. - In: PHYSICS OF THE DARK UNIVERSE. - ISSN 2212-6864. - 27:(2019). [10.1016/j.dark.2019.100351]

LHC Dark Matter Working Group: Next-generation spin-0 dark matter models

Gustavino, Giuliano;Ippolito, Valerio;Maltoni, Fabio;
2019

Abstract

Dark matter (DM) simplified models are by now commonly used by the ATLAS and CMS Collaborations to interpret searches for missing transverse energy (ETmiss). The coherent use of these models sharpened the LHC DM search program, especially in the presentation of its results and their comparison to DM direct-detection (DD) and indirect-detection (ID) experiments. However, the community has been aware of the limitations of the DM simplified models, in particular the lack of theoretical consistency of some of them and their restricted phenomenology leading to the relevance of only a small subset of ETmiss signatures. This document from the LHC Dark Matter Working Group identifies an example of a next-generation DM model, called 2HDM+a, that provides the simplest theoretically consistent extension of the DM pseudoscalar simplified model. A comprehensive study of the phenomenology of the 2HDM+a model is presented, including a discussion of the rich and intricate pattern of mono-X signatures and the relevance of other DM as well as non-DM experiments. Based on our discussions, a set of recommended scans are proposed to explore the parameter space of the 2HDM+a model through LHC searches. The exclusion limits obtained from the proposed scans can be consistently compared to the constraints on the 2HDM+a model that derive from DD, ID and the DM relic density.
2019
dark matter; simplified models; HEP
01 Pubblicazione su rivista::01a Articolo in rivista
LHC Dark Matter Working Group: Next-generation spin-0 dark matter models / Abe, Tomohiro; Afik, Yoav; Albert, Andreas; Anelli, Christopher R.; Barak, Liron; Bauer, Martin; Behr, J. Katharina; Bell, Nicole F.; Boveia, Antonio; Brandt, Oleg; Busoni, Giorgio; Carpenter, Linda M.; Chen, Yu-Heng; Doglioni, Caterina; Elliot, Alison; Fujiwara, Motoko; Genest, Marie-Helene; Gerosa, Raffaele; Gori, Stefania; Gramling, Johanna; Grohsjean, Alexander; Gustavino, Giuliano; Hahn, Kristian; Haisch, Ulrich; Henkelmann, Lars; Hisano, Junji; Huitfeldt, Anders; Ippolito, Valerio; Kahlhoefer, Felix; Landsberg, Greg; Lowette, Steven; Maier, Benedikt; Maltoni, Fabio; Muehlleitner, Margarete; No, Jose M.; Pani, Priscilla; Polesello, Giacomo; Price, Darren D.; Robens, Tania; Rovelli, Giulia; Rozen, Yoram; Sanderson, Isaac W.; Santos, Rui; Sevova, Stanislava; Sperka, David; Sung, Kevin; Tait, Tim M. P.; Terashi, Koji; Ungaro, Francesca C.; Vryonidou, Eleni; Yu, Shin-Shan; Wu, Sau Lan; Zhou, Chen. - In: PHYSICS OF THE DARK UNIVERSE. - ISSN 2212-6864. - 27:(2019). [10.1016/j.dark.2019.100351]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1750734
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 70
social impact