Sex differences affect Parkinson's disease (PD) development and manifestation. Yet, current PD identification and treatments underuse these distinctions. Sex-focused PD literature often prioritizes prevalence rates over feature importance analysis. However, underlying aspects could make a feature significant for predicting PD, despite its score. Interactions between features require consideration, as do distinctions between scoring disparities and actual feature importance. For instance, a higher score in males for a certain feature doesn't necessarily mean it's less important for characterizing PD in females. This article proposes an explainable Machine Learning (ML) model to elucidate these underlying factors, emphasizing the importance of features. This insight could be critical for personalized medicine, suggesting the need to tailor data collection and analysis for males and females. The model identifies sex-specific differences in PD, aiding in predicting outcomes as "Healthy" or "Pathological". It adopts a system-level approach, integrating heterogeneous data - clinical, imaging, genetics, and demographics - to study new biomarkers for diagnosis. The explainable ML approach aids non-ML experts in understanding model decisions, fostering trust and facilitating interpretation of complex ML outcomes, thus enhancing usability and translational research. The ML model identifies muscle rigidity, autonomic and cognitive assessments, and family history as key contributors to PD diagnosis, with sex differences noted. The genetic variant SNCA-rs356181 may be more significant in characterizing PD in males. Interaction analysis reveals a greater occurrence of feature interplay among males compared to females. These disparities offer insights into PD pathophysiology and could guide the development of sex-specific diagnostic and therapeutic approaches.

Unraveling sex differences in Parkinson's disease through explainable machine learning / Angelini, Gianfrancesco; Malvaso, Antonio; Schirripa, Aurelia; Campione, Francesca; D'Addario, Sebastian Luca; Toschi, Nicola; Caligiore, Daniele. - In: JOURNAL OF THE NEUROLOGICAL SCIENCES. - ISSN 0022-510X. - 462:(2024). [10.1016/j.jns.2024.123091]

Unraveling sex differences in Parkinson's disease through explainable machine learning

Schirripa, Aurelia;Campione, Francesca;D'Addario, Sebastian Luca;
2024

Abstract

Sex differences affect Parkinson's disease (PD) development and manifestation. Yet, current PD identification and treatments underuse these distinctions. Sex-focused PD literature often prioritizes prevalence rates over feature importance analysis. However, underlying aspects could make a feature significant for predicting PD, despite its score. Interactions between features require consideration, as do distinctions between scoring disparities and actual feature importance. For instance, a higher score in males for a certain feature doesn't necessarily mean it's less important for characterizing PD in females. This article proposes an explainable Machine Learning (ML) model to elucidate these underlying factors, emphasizing the importance of features. This insight could be critical for personalized medicine, suggesting the need to tailor data collection and analysis for males and females. The model identifies sex-specific differences in PD, aiding in predicting outcomes as "Healthy" or "Pathological". It adopts a system-level approach, integrating heterogeneous data - clinical, imaging, genetics, and demographics - to study new biomarkers for diagnosis. The explainable ML approach aids non-ML experts in understanding model decisions, fostering trust and facilitating interpretation of complex ML outcomes, thus enhancing usability and translational research. The ML model identifies muscle rigidity, autonomic and cognitive assessments, and family history as key contributors to PD diagnosis, with sex differences noted. The genetic variant SNCA-rs356181 may be more significant in characterizing PD in males. Interaction analysis reveals a greater occurrence of feature interplay among males compared to females. These disparities offer insights into PD pathophysiology and could guide the development of sex-specific diagnostic and therapeutic approaches.
2024
Explainable machine learning; Features importance; Gender differences; Heterogeneous data; Non-motor symptoms; Parkinson's disease.
01 Pubblicazione su rivista::01a Articolo in rivista
Unraveling sex differences in Parkinson's disease through explainable machine learning / Angelini, Gianfrancesco; Malvaso, Antonio; Schirripa, Aurelia; Campione, Francesca; D'Addario, Sebastian Luca; Toschi, Nicola; Caligiore, Daniele. - In: JOURNAL OF THE NEUROLOGICAL SCIENCES. - ISSN 0022-510X. - 462:(2024). [10.1016/j.jns.2024.123091]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1750318
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact