We construct a countable family of open intervals contained in (0,1] whose endpoints are quadratic surds and such that their union is a full measure set. We then show that these intervals are precisely the monotonicity intervals of the entropy of continued fractions, thus proving a conjecture of Nakada and Natsui. © Copyright Cambridge University Press 2011.

A canonical thickening of Q and the entropy of α-continued fraction transformations / Carminati, C.; Tiozzo, G.. - In: ERGODIC THEORY & DYNAMICAL SYSTEMS. - ISSN 0143-3857. - 32:4(2012), pp. 1249-1269. [10.1017/S0143385711000447]

A canonical thickening of Q and the entropy of α-continued fraction transformations

Tiozzo G.
2012

Abstract

We construct a countable family of open intervals contained in (0,1] whose endpoints are quadratic surds and such that their union is a full measure set. We then show that these intervals are precisely the monotonicity intervals of the entropy of continued fractions, thus proving a conjecture of Nakada and Natsui. © Copyright Cambridge University Press 2011.
2012
continued fractions; entropy; matching
01 Pubblicazione su rivista::01a Articolo in rivista
A canonical thickening of Q and the entropy of α-continued fraction transformations / Carminati, C.; Tiozzo, G.. - In: ERGODIC THEORY & DYNAMICAL SYSTEMS. - ISSN 0143-3857. - 32:4(2012), pp. 1249-1269. [10.1017/S0143385711000447]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1750013
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact