Around 2011, Thurston considered the set of Galois conjugates of all entropies of superattracting real quadratic polynomials and produced pictures showing that its closure has a rich fractal structure. In this paper, we investigate the geometry of this set, which we call the entropy spectrum, relate it to the set of zeros of polynomials with restricted coefficients, and prove that it is path-connected and locally connected.

Galois Conjugates of Entropies of Real Unimodal Maps / Tiozzo, G.. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2020:2(2020), pp. 607-640. [10.1093/imrn/rny046]

Galois Conjugates of Entropies of Real Unimodal Maps

Tiozzo G.
2020

Abstract

Around 2011, Thurston considered the set of Galois conjugates of all entropies of superattracting real quadratic polynomials and produced pictures showing that its closure has a rich fractal structure. In this paper, we investigate the geometry of this set, which we call the entropy spectrum, relate it to the set of zeros of polynomials with restricted coefficients, and prove that it is path-connected and locally connected.
2020
Galois conjugates; entropy; unimodal map; Thurston set
01 Pubblicazione su rivista::01a Articolo in rivista
Galois Conjugates of Entropies of Real Unimodal Maps / Tiozzo, G.. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2020:2(2020), pp. 607-640. [10.1093/imrn/rny046]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1749844
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact