We prove a generalization of the fundamental inequality of Guivarc'h relating entropy, drift and critical exponent to Gibbs measures on geometrically finite quotients of CAT(-1) metric spaces. For random walks with finite superexponential moment, we show that the equality is achieved if and only if the Gibbs density is equivalent to the hitting measure. As a corollary, if the action is not convex cocompact, any hitting measure is singular to any Gibbs density.

Entropy and drift for gibbs measures on geometrically finite manifolds / Gekhtman, I.; Tiozzo, G.. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - 373:4(2020), pp. 2949-2980. [10.1090/tran/8036]

Entropy and drift for gibbs measures on geometrically finite manifolds

Tiozzo G.
2020

Abstract

We prove a generalization of the fundamental inequality of Guivarc'h relating entropy, drift and critical exponent to Gibbs measures on geometrically finite quotients of CAT(-1) metric spaces. For random walks with finite superexponential moment, we show that the equality is achieved if and only if the Gibbs density is equivalent to the hitting measure. As a corollary, if the action is not convex cocompact, any hitting measure is singular to any Gibbs density.
2020
Geometrically finite manifold; Gibbs measure; thermodynamic formalism; singularity conjecture; entropy; drift; random walk
01 Pubblicazione su rivista::01a Articolo in rivista
Entropy and drift for gibbs measures on geometrically finite manifolds / Gekhtman, I.; Tiozzo, G.. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - 373:4(2020), pp. 2949-2980. [10.1090/tran/8036]
File allegati a questo prodotto
File Dimensione Formato  
Gekthman_Entropy-and-drift_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 391.11 kB
Formato Adobe PDF
391.11 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1749839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact