Motivated by the notion of cusp excursion in geometrically finite hyperbolic manifolds, we define a notion of excursion in any subgroup of a given group and study its asymptotic distribution for right-angled Artin groups (RAAGs) and graph products. In particular, for any irreducible RAAG we show that with respect to the counting measure, the maximal excursion of a generic geodesic in any flat tends to n, where n is the length of the geodesic. In this regard, irreducible RAAGs behave like a free product of groups. In fact, we show that the asymptotic distribution of excursions detects the growth rate of the RAAG and whether it is reducible.

Excursions of Generic Geodesics in Right-Angled Artin Groups and Graph Products / Qing, Y.; Tiozzo, G.. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2021:22(2021), pp. 16910-16937. [10.1093/imrn/rnz294]

Excursions of Generic Geodesics in Right-Angled Artin Groups and Graph Products

Tiozzo G.
2021

Abstract

Motivated by the notion of cusp excursion in geometrically finite hyperbolic manifolds, we define a notion of excursion in any subgroup of a given group and study its asymptotic distribution for right-angled Artin groups (RAAGs) and graph products. In particular, for any irreducible RAAG we show that with respect to the counting measure, the maximal excursion of a generic geodesic in any flat tends to n, where n is the length of the geodesic. In this regard, irreducible RAAGs behave like a free product of groups. In fact, we show that the asymptotic distribution of excursions detects the growth rate of the RAAG and whether it is reducible.
2021
cusp excursion; right-angled Artin group; geometric group theory; counting
01 Pubblicazione su rivista::01a Articolo in rivista
Excursions of Generic Geodesics in Right-Angled Artin Groups and Graph Products / Qing, Y.; Tiozzo, G.. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2021:22(2021), pp. 16910-16937. [10.1093/imrn/rnz294]
File allegati a questo prodotto
File Dimensione Formato  
Qing_Excursion_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 328.52 kB
Formato Adobe PDF
328.52 kB Adobe PDF   Contatta l'autore
Qing_preprint_Excursion_2021.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 243.03 kB
Formato Adobe PDF
243.03 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1749813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact