A fundamental theme in holomorphic dynamics is that the local geometry of parameter space (e.g. the Mandelbrot set) near a parameter reflects the geometry of the Julia set, hence ultimately the dynamical properties, of the corresponding dynamical system. We establish a new instance of this phenomenon in terms of entropy.Indeed, we prove an "entropy formula" relating the entropy of a polynomial restricted to its Hubbard tree to the Hausdorff dimension of the set of rays landing on the corresponding vein in the Mandelbrot set. The results contribute to the recent program of W. Thurston of understanding the geometry of the Mandelbrot set via the core entropy.

Topological entropy of quadratic polynomials and dimension of sections of the Mandelbrot set / Tiozzo, G.. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 273:(2015), pp. 651-715. [10.1016/j.aim.2014.12.033]

Topological entropy of quadratic polynomials and dimension of sections of the Mandelbrot set

Tiozzo G.
2015

Abstract

A fundamental theme in holomorphic dynamics is that the local geometry of parameter space (e.g. the Mandelbrot set) near a parameter reflects the geometry of the Julia set, hence ultimately the dynamical properties, of the corresponding dynamical system. We establish a new instance of this phenomenon in terms of entropy.Indeed, we prove an "entropy formula" relating the entropy of a polynomial restricted to its Hubbard tree to the Hausdorff dimension of the set of rays landing on the corresponding vein in the Mandelbrot set. The results contribute to the recent program of W. Thurston of understanding the geometry of the Mandelbrot set via the core entropy.
2015
Complex dynamics; Entropy; Hausdorff dimension; Hubbard trees; Mandelbrot set
01 Pubblicazione su rivista::01a Articolo in rivista
Topological entropy of quadratic polynomials and dimension of sections of the Mandelbrot set / Tiozzo, G.. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 273:(2015), pp. 651-715. [10.1016/j.aim.2014.12.033]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1749789
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
social impact