In this note, we prove that a random extension of either the free group FN of rank N ≥ 3 or of the fundamental group of a closed, orientable surface Sg of genus g≥2 is a hyperbolic group. Here, a random extension is one corresponding to a subgroup of either Out(FN) or Mod(Sg) generated by k independent random walks. Our main theorem is that a k-generated random subgroup of Mod(Sg) or Out(FN) is free of rank k and convex cocompact. More generally, we show that a k-generated random subgroup of a weakly hyperbolic group is free and undistorted.

Random extensions of free groups and surface groups are hyperbolic / Taylor, S. J.; Tiozzo, G.. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2016:1(2016), pp. 294-310. [10.1093/imrn/rnv138]

Random extensions of free groups and surface groups are hyperbolic

Tiozzo G.
2016

Abstract

In this note, we prove that a random extension of either the free group FN of rank N ≥ 3 or of the fundamental group of a closed, orientable surface Sg of genus g≥2 is a hyperbolic group. Here, a random extension is one corresponding to a subgroup of either Out(FN) or Mod(Sg) generated by k independent random walks. Our main theorem is that a k-generated random subgroup of Mod(Sg) or Out(FN) is free of rank k and convex cocompact. More generally, we show that a k-generated random subgroup of a weakly hyperbolic group is free and undistorted.
2016
hyperbolic groups; random walks; group extensions
01 Pubblicazione su rivista::01a Articolo in rivista
Random extensions of free groups and surface groups are hyperbolic / Taylor, S. J.; Tiozzo, G.. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2016:1(2016), pp. 294-310. [10.1093/imrn/rnv138]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1749767
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 26
social impact