We prove a central limit theorem for the length of closed geodesics in any compact orientable hyperbolic surface. In the special case of a hyperbolic pair of pants, this settles a conjecture of Chas–Li–Maskit.
A central limit theorem for random closed geodesics: Proof of the Chas–Li–Maskit conjecture / Gekhtman, I.; Taylor, S. J.; Tiozzo, G.. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 358:(2019). [10.1016/j.aim.2019.106852]
A central limit theorem for random closed geodesics: Proof of the Chas–Li–Maskit conjecture
Tiozzo G.
2019
Abstract
We prove a central limit theorem for the length of closed geodesics in any compact orientable hyperbolic surface. In the special case of a hyperbolic pair of pants, this settles a conjecture of Chas–Li–Maskit.File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


