For geometrically finite group actions on hyperbolic metric spaces and under certain assumptions on the growth of parabolic subgroups, we prove a global shadow lemma for Patterson–Sullivan measures, as well as a Dirichlet-type theorem and a logarithm law for excursion of geodesics into cusps. We then apply these results to geometrically finite quotients of strictly convex Hilbert geometries with C1 boundary.

A global shadow lemma and logarithm law for geometrically finite Hilbert geometries / Bray, H.; Tiozzo, G.. - In: JOURNAL OF MODERN DYNAMICS. - ISSN 1930-5311. - 21:(2025), pp. 443-496. [10.3934/jmd.2025008]

A global shadow lemma and logarithm law for geometrically finite Hilbert geometries

Tiozzo G.
2025

Abstract

For geometrically finite group actions on hyperbolic metric spaces and under certain assumptions on the growth of parabolic subgroups, we prove a global shadow lemma for Patterson–Sullivan measures, as well as a Dirichlet-type theorem and a logarithm law for excursion of geodesics into cusps. We then apply these results to geometrically finite quotients of strictly convex Hilbert geometries with C1 boundary.
2025
Hilbert geometry; logarithm law; Patterson–Sullivan measure; shadow lemma
01 Pubblicazione su rivista::01a Articolo in rivista
A global shadow lemma and logarithm law for geometrically finite Hilbert geometries / Bray, H.; Tiozzo, G.. - In: JOURNAL OF MODERN DYNAMICS. - ISSN 1930-5311. - 21:(2025), pp. 443-496. [10.3934/jmd.2025008]
File allegati a questo prodotto
File Dimensione Formato  
Bray_GlobalShadowLemma_2025.pdf

embargo fino al 01/01/2053

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 428.42 kB
Formato Adobe PDF
428.42 kB Adobe PDF   Contatta l'autore
Bray_GlobalShadow_2025_arxiv.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 512.36 kB
Formato Adobe PDF
512.36 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1749683
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact