For geometrically finite group actions on hyperbolic metric spaces and under certain assumptions on the growth of parabolic subgroups, we prove a global shadow lemma for Patterson–Sullivan measures, as well as a Dirichlet-type theorem and a logarithm law for excursion of geodesics into cusps. We then apply these results to geometrically finite quotients of strictly convex Hilbert geometries with C1 boundary.
A global shadow lemma and logarithm law for geometrically finite Hilbert geometries / Bray, H.; Tiozzo, G.. - In: JOURNAL OF MODERN DYNAMICS. - ISSN 1930-5311. - 21:(2025), pp. 443-496. [10.3934/jmd.2025008]
A global shadow lemma and logarithm law for geometrically finite Hilbert geometries
Tiozzo G.
2025
Abstract
For geometrically finite group actions on hyperbolic metric spaces and under certain assumptions on the growth of parabolic subgroups, we prove a global shadow lemma for Patterson–Sullivan measures, as well as a Dirichlet-type theorem and a logarithm law for excursion of geodesics into cusps. We then apply these results to geometrically finite quotients of strictly convex Hilbert geometries with C1 boundary.| File | Dimensione | Formato | |
|---|---|---|---|
|
Bray_GlobalShadowLemma_2025.pdf
embargo fino al 01/01/2053
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
428.42 kB
Formato
Adobe PDF
|
428.42 kB | Adobe PDF | Contatta l'autore |
|
Bray_GlobalShadow_2025_arxiv.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
512.36 kB
Formato
Adobe PDF
|
512.36 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


