We study the problem of a fund manager whose contractual incentive is given by the sum of a constant and a variable term. The manager has a power utility function and the continuous time stochastic processes driving the dynamics of the market prices exhibit mean reversion either in the volatilities or in the expected returns. We provide an approximation for the optimal wealth and for the optimal strategy based on affine processes and the fast fourier transform.

Optimal strategies with option compensation under mean reverting returns or volatilities / Herzel, Stefano; Nicolosi, Marco. - In: COMPUTATIONAL MANAGEMENT SCIENCE. - ISSN 1619-697X. - 16:1-2(2019), pp. 47-69. [10.1007/s10287-017-0296-3]

Optimal strategies with option compensation under mean reverting returns or volatilities

Marco Nicolosi
2019

Abstract

We study the problem of a fund manager whose contractual incentive is given by the sum of a constant and a variable term. The manager has a power utility function and the continuous time stochastic processes driving the dynamics of the market prices exhibit mean reversion either in the volatilities or in the expected returns. We provide an approximation for the optimal wealth and for the optimal strategy based on affine processes and the fast fourier transform.
2019
Investment Analysis; Portfolio Management; Convex incentives; Optimal Control; Fourier transform; Mean reverting processes
01 Pubblicazione su rivista::01a Articolo in rivista
Optimal strategies with option compensation under mean reverting returns or volatilities / Herzel, Stefano; Nicolosi, Marco. - In: COMPUTATIONAL MANAGEMENT SCIENCE. - ISSN 1619-697X. - 16:1-2(2019), pp. 47-69. [10.1007/s10287-017-0296-3]
File allegati a questo prodotto
File Dimensione Formato  
Nicolosi_Optimal strategies_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 981.9 kB
Formato Adobe PDF
981.9 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1749266
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact