We build an analogue of the Gromov boundary for any proper geodesic metric space, hence for any finitely generated group. More precisely, for any proper geodesic metric space X and any sublinear function, we construct a boundary for X, denoted by @ X, that is quasi-isometrically invariant and metrizable. As an application, we show that when G is the mapping class group of a finite type surface or a relatively hyperbolic group, with minimal assumptions, the Poisson boundary of G can be realized on the –Morse boundary of G equipped with the word metric associated to any finite generating set.

Sublinearly Morse boundary, II: Proper geodesic spaces / Qing, Y.; Rafi, K.; Tiozzo, G.. - In: GEOMETRY & TOPOLOGY. - ISSN 1465-3060. - 28:4(2024), pp. 1829-1889. [10.2140/gt.2024.28.1829]

Sublinearly Morse boundary, II: Proper geodesic spaces

Tiozzo G.
2024

Abstract

We build an analogue of the Gromov boundary for any proper geodesic metric space, hence for any finitely generated group. More precisely, for any proper geodesic metric space X and any sublinear function, we construct a boundary for X, denoted by @ X, that is quasi-isometrically invariant and metrizable. As an application, we show that when G is the mapping class group of a finite type surface or a relatively hyperbolic group, with minimal assumptions, the Poisson boundary of G can be realized on the –Morse boundary of G equipped with the word metric associated to any finite generating set.
2024
geometric group theory; mapping class group; Morse geodesic; Poisson boundary; random walk; relatively hyperbolic group
01 Pubblicazione su rivista::01a Articolo in rivista
Sublinearly Morse boundary, II: Proper geodesic spaces / Qing, Y.; Rafi, K.; Tiozzo, G.. - In: GEOMETRY & TOPOLOGY. - ISSN 1465-3060. - 28:4(2024), pp. 1829-1889. [10.2140/gt.2024.28.1829]
File allegati a questo prodotto
File Dimensione Formato  
Qing_Sublinearly_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 864.26 kB
Formato Adobe PDF
864.26 kB Adobe PDF   Contatta l'autore
Qing_preprint_Sublinearly-2024.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 631.71 kB
Formato Adobe PDF
631.71 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1749208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact