We build an analogue of the Gromov boundary for any proper geodesic metric space, hence for any finitely generated group. More precisely, for any proper geodesic metric space X and any sublinear function, we construct a boundary for X, denoted by @ X, that is quasi-isometrically invariant and metrizable. As an application, we show that when G is the mapping class group of a finite type surface or a relatively hyperbolic group, with minimal assumptions, the Poisson boundary of G can be realized on the –Morse boundary of G equipped with the word metric associated to any finite generating set.
Sublinearly Morse boundary, II: Proper geodesic spaces / Qing, Y.; Rafi, K.; Tiozzo, G.. - In: GEOMETRY & TOPOLOGY. - ISSN 1465-3060. - 28:4(2024), pp. 1829-1889. [10.2140/gt.2024.28.1829]
Sublinearly Morse boundary, II: Proper geodesic spaces
Tiozzo G.
2024
Abstract
We build an analogue of the Gromov boundary for any proper geodesic metric space, hence for any finitely generated group. More precisely, for any proper geodesic metric space X and any sublinear function, we construct a boundary for X, denoted by @ X, that is quasi-isometrically invariant and metrizable. As an application, we show that when G is the mapping class group of a finite type surface or a relatively hyperbolic group, with minimal assumptions, the Poisson boundary of G can be realized on the –Morse boundary of G equipped with the word metric associated to any finite generating set.| File | Dimensione | Formato | |
|---|---|---|---|
|
Qing_Sublinearly_2024.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
864.26 kB
Formato
Adobe PDF
|
864.26 kB | Adobe PDF | Contatta l'autore |
|
Qing_preprint_Sublinearly-2024.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
631.71 kB
Formato
Adobe PDF
|
631.71 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


