Obsessive-compulsive disorder (OCD) has long been conceptualized as a neuron-centric disorder of cortico-striato-thalamo-cortical (CSTC) circuit dysregulation. However, a growing body of evidence is now reframing this narrative, placing astrocytes-once relegated to passive support roles-at the center of OCD pathophysiology. Astrocytes are critical regulators of glutamate and GABA homeostasis, calcium signaling, and synaptic plasticity, all of which are disrupted in OCD. Recent high-resolution molecular and proteomic studies reveal that specific astrocyte subpopulations, including Crym-positive astrocytes, directly shape excitatory/inhibitory balance and control perseverative behaviors by modulating presynaptic inputs from the orbitofrontal cortex. Disruptions in astrocytic neurotransmitter clearance and dopamine metabolism amplify CSTC circuit hyperactivity and reinforce compulsions. This review reframes OCD as a disorder of neuro-glial dysfunctions, proposing that targeting astrocytic signaling, metabolism, and structural plasticity may unlock transformative therapeutic strategies. By integrating human and animal data, we advocate for a glial-centric model of OCD that not only enhances mechanistic understanding but also opens new frontiers for precision treatment. image
Astrocyte dysfunctions in obsessive compulsive disorder. Rethinking neurobiology and therapeutic targets / Gonzalez, L.; Bezzi, P.. - In: JOURNAL OF NEUROCHEMISTRY. - ISSN 1471-4159. - 169:5(2025), pp. 1-18. [10.1111/jnc.70092]
Astrocyte dysfunctions in obsessive compulsive disorder. Rethinking neurobiology and therapeutic targets
Bezzi P.
Conceptualization
2025
Abstract
Obsessive-compulsive disorder (OCD) has long been conceptualized as a neuron-centric disorder of cortico-striato-thalamo-cortical (CSTC) circuit dysregulation. However, a growing body of evidence is now reframing this narrative, placing astrocytes-once relegated to passive support roles-at the center of OCD pathophysiology. Astrocytes are critical regulators of glutamate and GABA homeostasis, calcium signaling, and synaptic plasticity, all of which are disrupted in OCD. Recent high-resolution molecular and proteomic studies reveal that specific astrocyte subpopulations, including Crym-positive astrocytes, directly shape excitatory/inhibitory balance and control perseverative behaviors by modulating presynaptic inputs from the orbitofrontal cortex. Disruptions in astrocytic neurotransmitter clearance and dopamine metabolism amplify CSTC circuit hyperactivity and reinforce compulsions. This review reframes OCD as a disorder of neuro-glial dysfunctions, proposing that targeting astrocytic signaling, metabolism, and structural plasticity may unlock transformative therapeutic strategies. By integrating human and animal data, we advocate for a glial-centric model of OCD that not only enhances mechanistic understanding but also opens new frontiers for precision treatment. image| File | Dimensione | Formato | |
|---|---|---|---|
|
Gonzalez_Astrocyte_2025.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


