The thin obstacle problem, or n-dimensional Signorini problem, is a classical variational problem with roots in elasticity theory and wide-ranging applications. The vast literature concerns mostly quadratic energies, whereas only partial results have been proved in the nonlinear case. In this paper, we consider the thin boundary obstacle problem for a general class of nonlinearities and we prove the optimal C 1;1=2-regularity of the solutions in any space dimension.
On the nonlinear thin obstacle problem / Abbatiello, A.; Andreucci, G.; Spadaro, E.. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 41:5(2025), pp. 1833-1862. [10.4171/RMI/1541]
On the nonlinear thin obstacle problem
Abbatiello A.;Andreucci G.;Spadaro E.
2025
Abstract
The thin obstacle problem, or n-dimensional Signorini problem, is a classical variational problem with roots in elasticity theory and wide-ranging applications. The vast literature concerns mostly quadratic energies, whereas only partial results have been proved in the nonlinear case. In this paper, we consider the thin boundary obstacle problem for a general class of nonlinearities and we prove the optimal C 1;1=2-regularity of the solutions in any space dimension.| File | Dimensione | Formato | |
|---|---|---|---|
|
Abbatiello_On-the-nonlinear2025.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
537.12 kB
Formato
Adobe PDF
|
537.12 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


