We exploit an identity for the gradients of Laplacian eigenfunctions on compact homogeneous Riemannian manifolds with irreducible linear isotropy group to obtain asymptotically sharp universal eigenvalue inequalities and sharp Weyl bounds on Riesz means. The approach is non variational and is based on identities for spectral quantities in the form of sum rules.
Sum rules and sharp eigenvalue bounds for compact homogeneous irreducible Riemannian manifolds / Provenzano, L.; Stubbe, J.. - In: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY. - ISSN 0232-704X. - 68:3(2025). [10.1007/s10455-025-10018-z]
Sum rules and sharp eigenvalue bounds for compact homogeneous irreducible Riemannian manifolds
Provenzano L.
;
2025
Abstract
We exploit an identity for the gradients of Laplacian eigenfunctions on compact homogeneous Riemannian manifolds with irreducible linear isotropy group to obtain asymptotically sharp universal eigenvalue inequalities and sharp Weyl bounds on Riesz means. The approach is non variational and is based on identities for spectral quantities in the form of sum rules.File allegati a questo prodotto
| File | Dimensione | Formato | |
|---|---|---|---|
|
Provenzano_rules_2025.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
318.01 kB
Formato
Adobe PDF
|
318.01 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


