We exploit an identity for the gradients of Laplacian eigenfunctions on compact homogeneous Riemannian manifolds with irreducible linear isotropy group to obtain asymptotically sharp universal eigenvalue inequalities and sharp Weyl bounds on Riesz means. The approach is non variational and is based on identities for spectral quantities in the form of sum rules.

Sum rules and sharp eigenvalue bounds for compact homogeneous irreducible Riemannian manifolds / Provenzano, L.; Stubbe, J.. - In: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY. - ISSN 0232-704X. - 68:3(2025). [10.1007/s10455-025-10018-z]

Sum rules and sharp eigenvalue bounds for compact homogeneous irreducible Riemannian manifolds

Provenzano L.
;
2025

Abstract

We exploit an identity for the gradients of Laplacian eigenfunctions on compact homogeneous Riemannian manifolds with irreducible linear isotropy group to obtain asymptotically sharp universal eigenvalue inequalities and sharp Weyl bounds on Riesz means. The approach is non variational and is based on identities for spectral quantities in the form of sum rules.
2025
Homogeneous space; Irreducible isotropy group; Sharp eigenvalue bounds; Sum rules; Universal inequalities
01 Pubblicazione su rivista::01a Articolo in rivista
Sum rules and sharp eigenvalue bounds for compact homogeneous irreducible Riemannian manifolds / Provenzano, L.; Stubbe, J.. - In: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY. - ISSN 0232-704X. - 68:3(2025). [10.1007/s10455-025-10018-z]
File allegati a questo prodotto
File Dimensione Formato  
Provenzano_rules_2025.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 318.01 kB
Formato Adobe PDF
318.01 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1748802
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact