We develop a general algorithmic framework that allows us to obtain fixed-parameter tractability for computing smallest symbolic models that represent given data. Our framework applies to all ML model types that admit a certain extension property. By establishing this extension property for decision trees, decision sets, decision lists, and binary decision diagrams, we obtain that minimizing these fundamental model types is fixed-parameter tractable. Our framework even applies to ensembles, which combine individual models by majority decision.

A General Theoretical Framework for Learning Smallest Interpretable Models / Ordyniak, Sebastian; Paesani, Giacomo; Rychlicki, Mateusz; Szeider, Stefan. - 38:9(2024), pp. 10662-10669. ( 38th AAAI Conference on Artificial Intelligence, AAAI 2024 Vancuver, Canada ) [10.1609/aaai.v38i9.28937].

A General Theoretical Framework for Learning Smallest Interpretable Models

Paesani, Giacomo;
2024

Abstract

We develop a general algorithmic framework that allows us to obtain fixed-parameter tractability for computing smallest symbolic models that represent given data. Our framework applies to all ML model types that admit a certain extension property. By establishing this extension property for decision trees, decision sets, decision lists, and binary decision diagrams, we obtain that minimizing these fundamental model types is fixed-parameter tractable. Our framework even applies to ensembles, which combine individual models by majority decision.
2024
38th AAAI Conference on Artificial Intelligence, AAAI 2024
Computational Complexity of Reasoning; Transparent, Interpretable ML; Explainable ML
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
A General Theoretical Framework for Learning Smallest Interpretable Models / Ordyniak, Sebastian; Paesani, Giacomo; Rychlicki, Mateusz; Szeider, Stefan. - 38:9(2024), pp. 10662-10669. ( 38th AAAI Conference on Artificial Intelligence, AAAI 2024 Vancuver, Canada ) [10.1609/aaai.v38i9.28937].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1747617
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact