We consider the NP-hard problem of finding a smallest decision tree representing a classification instance in terms of a partially defined Boolean function. Small decision trees are desirable to provide an interpretable model for the given data. We show that the problem is fixed-parameter tractable when parameterized by the rank-width of the incidence graph of the given classification instance. Our algorithm proceeds by dynamic programming using an NLC decomposition obtained from a rank-width decomposition. The key to the algorithm is a succinct representation of partial solutions. This allows us to limit the space and time requirements for each dynamic programming step in terms of the parameter.

Learning Small Decision Trees for Data of Low Rank-Width / Dabrowski, Konrad K.; Eiben, Eduard; Ordyniak, Sebastian; Paesani, Giacomo; Szeider, Stefan. - 38:9(2024), pp. 10476-10483. ( AAAI Conference on Artificial Intelligence Vancuver, Canada ) [10.1609/aaai.v38i9.28916].

Learning Small Decision Trees for Data of Low Rank-Width

Paesani, Giacomo;
2024

Abstract

We consider the NP-hard problem of finding a smallest decision tree representing a classification instance in terms of a partially defined Boolean function. Small decision trees are desirable to provide an interpretable model for the given data. We show that the problem is fixed-parameter tractable when parameterized by the rank-width of the incidence graph of the given classification instance. Our algorithm proceeds by dynamic programming using an NLC decomposition obtained from a rank-width decomposition. The key to the algorithm is a succinct representation of partial solutions. This allows us to limit the space and time requirements for each dynamic programming step in terms of the parameter.
2024
AAAI Conference on Artificial Intelligence
Computational Complexity of Reasoning; Decision Trees; rank-width
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Learning Small Decision Trees for Data of Low Rank-Width / Dabrowski, Konrad K.; Eiben, Eduard; Ordyniak, Sebastian; Paesani, Giacomo; Szeider, Stefan. - 38:9(2024), pp. 10476-10483. ( AAAI Conference on Artificial Intelligence Vancuver, Canada ) [10.1609/aaai.v38i9.28916].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1747611
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact