In this paper, we present a novel encrypted traffic classification model that operates directly on raw PCAP data without requiring prior assumptions about traffic type. Unlike existing methods, it is generalizable across multiple classification tasks and leverages inter-flow signals—an innovative representation that captures temporal correlations and packet volume distributions across flows. Experimental results show that our model outperforms well-established methods in nearly every classification task and across most datasets, achieving up to 99% accuracy in some cases, demonstrating its robustness and adaptability.

Generalized Encrypted Traffic Classification Using Inter-flow Signals / Bianchi, F.; Di Paolo, E.; Spognardi, A.. - 15992 LNCS:(2025), pp. 221-231. ( ARES Ghent; Belgium ) [10.1007/978-3-032-00624-0_11].

Generalized Encrypted Traffic Classification Using Inter-flow Signals

Bianchi F.
;
Di Paolo E.;Spognardi A.
2025

Abstract

In this paper, we present a novel encrypted traffic classification model that operates directly on raw PCAP data without requiring prior assumptions about traffic type. Unlike existing methods, it is generalizable across multiple classification tasks and leverages inter-flow signals—an innovative representation that captures temporal correlations and packet volume distributions across flows. Experimental results show that our model outperforms well-established methods in nearly every classification task and across most datasets, achieving up to 99% accuracy in some cases, demonstrating its robustness and adaptability.
2025
ARES
Encrypted traffic analysis; Network Security; Machine Learning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Generalized Encrypted Traffic Classification Using Inter-flow Signals / Bianchi, F.; Di Paolo, E.; Spognardi, A.. - 15992 LNCS:(2025), pp. 221-231. ( ARES Ghent; Belgium ) [10.1007/978-3-032-00624-0_11].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1747577
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact