In the Feedback Vertex Set problem, we aim to find a small set S of vertices in a graph intersecting every cycle. The Subset Feedback Vertex Set problem requires S to intersect only those cycles that include a vertex of some specified set T. We also consider the Weighted Subset Feedback Vertex Set problem, where each vertex u has weight $$w(u)>0$$ and we ask that S has small weight. By combining known NP-hardness results with new polynomial-time results we prove full complexity dichotomies for Subset Feedback Vertex Set and Weighted Subset Feedback Vertex Set for H-free graphs, that is, graphs that do not contain a graph H as an induced subgraph.

Classifying Subset Feedback Vertex Set for H-Free Graphs / Paesani, G.; Paulusma, D.; Rzazewski, P.. - 13453:(2022), pp. 412-424. ( 48th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2022 Tubingen; Germania ) [10.1007/978-3-031-15914-5_30].

Classifying Subset Feedback Vertex Set for H-Free Graphs

Paesani G.;
2022

Abstract

In the Feedback Vertex Set problem, we aim to find a small set S of vertices in a graph intersecting every cycle. The Subset Feedback Vertex Set problem requires S to intersect only those cycles that include a vertex of some specified set T. We also consider the Weighted Subset Feedback Vertex Set problem, where each vertex u has weight $$w(u)>0$$ and we ask that S has small weight. By combining known NP-hardness results with new polynomial-time results we prove full complexity dichotomies for Subset Feedback Vertex Set and Weighted Subset Feedback Vertex Set for H-free graphs, that is, graphs that do not contain a graph H as an induced subgraph.
2022
48th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2022
complexity dichotomy; feedback vertex set; H-free graph
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Classifying Subset Feedback Vertex Set for H-Free Graphs / Paesani, G.; Paulusma, D.; Rzazewski, P.. - 13453:(2022), pp. 412-424. ( 48th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2022 Tubingen; Germania ) [10.1007/978-3-031-15914-5_30].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1747519
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact