We consider objects associated with a fuzzy set-based representation. By using a classic method of measurement theory, we characterize dissimilarity relations agreeing with a particular class of fuzzy dissimilarity measures. Dissimilarity measures in the considered class are those only depending on the attribute-wise distance of fuzzy description profiles. In particular, we analyze the subclass of weighted Manhattan dissimilarity measures.

A Measurement Theory Characterization of a Class of Dissimilarity Measures for Fuzzy Description Profiles / Coletti, Giulianella; Petturiti, Davide; Bouchon-Meunier, Bernadette. - CCIS 1238:(2020), pp. 258-268. ( 18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2020) Lisbon, Portugal ) [10.1007/978-3-030-50143-3_20].

A Measurement Theory Characterization of a Class of Dissimilarity Measures for Fuzzy Description Profiles

Davide Petturiti
;
2020

Abstract

We consider objects associated with a fuzzy set-based representation. By using a classic method of measurement theory, we characterize dissimilarity relations agreeing with a particular class of fuzzy dissimilarity measures. Dissimilarity measures in the considered class are those only depending on the attribute-wise distance of fuzzy description profiles. In particular, we analyze the subclass of weighted Manhattan dissimilarity measures.
2020
18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2020)
Dissimilarity relation; Fuzzy description profiles; Axioms; Weighted Manhattan dissimilarity measure
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
A Measurement Theory Characterization of a Class of Dissimilarity Measures for Fuzzy Description Profiles / Coletti, Giulianella; Petturiti, Davide; Bouchon-Meunier, Bernadette. - CCIS 1238:(2020), pp. 258-268. ( 18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2020) Lisbon, Portugal ) [10.1007/978-3-030-50143-3_20].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1747493
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact