This article addresses a classification problem relying on an ensemble of Structural Restricted Boltzmann Machines (SRBMs). Each SRBM in the ensemble is trained by imposing structural constraints on the related weight matrix, so as to enforce sparsity, and results in a probabilistic classifier. Hence, given a new instance, the ensemble gives rise to a credal classifier where the classification is carried out relying on the alpha-maxmin criterion, depending on a pessimism index α ∈ [0, 1], and a β-quantile filtering of outliers. The paper presents an experimental analysis on artificial data sets to highlight the role of the parameters α and β in the classification performances.
Alpha-Maxmin Classification with an Ensemble of Structural Restricted Boltzmann Machines / Petturiti, Davide; Rifqi, Maria. - LNCS 15884:(2025), pp. 185-197. ( 14th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2025) Riga, Latvia ) [10.1007/978-3-031-97228-7_16].
Alpha-Maxmin Classification with an Ensemble of Structural Restricted Boltzmann Machines
Davide Petturiti
;
2025
Abstract
This article addresses a classification problem relying on an ensemble of Structural Restricted Boltzmann Machines (SRBMs). Each SRBM in the ensemble is trained by imposing structural constraints on the related weight matrix, so as to enforce sparsity, and results in a probabilistic classifier. Hence, given a new instance, the ensemble gives rise to a credal classifier where the classification is carried out relying on the alpha-maxmin criterion, depending on a pessimism index α ∈ [0, 1], and a β-quantile filtering of outliers. The paper presents an experimental analysis on artificial data sets to highlight the role of the parameters α and β in the classification performances.| File | Dimensione | Formato | |
|---|---|---|---|
|
Petturiti_Alpha-Maxmin_2025.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
923.47 kB
Formato
Adobe PDF
|
923.47 kB | Adobe PDF | Contatta l'autore |
|
Petturiti_Cover+TOC_2025.pdf
solo gestori archivio
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
224.82 kB
Formato
Adobe PDF
|
224.82 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


