Combining some difference methods with the famous Bays-Lambossy theorem and its generalizations we establish some non-trivial lower bounds on the number of cyclic 2-(v, k, 1) designs up to isomorphism.
Some bounds on the number of cyclic Steiner 2-designs / Buratti, M.; Muzychuk, M. E.. - In: THE ART OF DISCRETE AND APPLIED MATHEMATICS. - ISSN 2590-9770. - 8:1(2025). [10.26493/2590-9770.1790.18e]
Some bounds on the number of cyclic Steiner 2-designs
Buratti M.
Primo
Writing – Original Draft Preparation
;
2025
Abstract
Combining some difference methods with the famous Bays-Lambossy theorem and its generalizations we establish some non-trivial lower bounds on the number of cyclic 2-(v, k, 1) designs up to isomorphism.File allegati a questo prodotto
| File | Dimensione | Formato | |
|---|---|---|---|
|
buratti_bounds_2025.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
449.91 kB
Formato
Adobe PDF
|
449.91 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


