Combining some difference methods with the famous Bays-Lambossy theorem and its generalizations we establish some non-trivial lower bounds on the number of cyclic 2-(v, k, 1) designs up to isomorphism.

Some bounds on the number of cyclic Steiner 2-designs / Buratti, M.; Muzychuk, M. E.. - In: THE ART OF DISCRETE AND APPLIED MATHEMATICS. - ISSN 2590-9770. - 8:1(2025). [10.26493/2590-9770.1790.18e]

Some bounds on the number of cyclic Steiner 2-designs

Buratti M.
Primo
Writing – Original Draft Preparation
;
2025

Abstract

Combining some difference methods with the famous Bays-Lambossy theorem and its generalizations we establish some non-trivial lower bounds on the number of cyclic 2-(v, k, 1) designs up to isomorphism.
2025
Cyclic Steiner 2-design; difference family; multiplier
01 Pubblicazione su rivista::01a Articolo in rivista
Some bounds on the number of cyclic Steiner 2-designs / Buratti, M.; Muzychuk, M. E.. - In: THE ART OF DISCRETE AND APPLIED MATHEMATICS. - ISSN 2590-9770. - 8:1(2025). [10.26493/2590-9770.1790.18e]
File allegati a questo prodotto
File Dimensione Formato  
buratti_bounds_2025.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 449.91 kB
Formato Adobe PDF
449.91 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1747438
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact