Polypropylene (PP) is a key component of nanoplastics detected globally in water, which can carry pollutants through co-transport. In this regard, the co-transport of perfluoroalkyl substances (PFAS) by nanoplastics (NPs) raises significant concern, as NPs can act as vectors that enhance PFAS uptake and bioaccumulation in organisms during co-exposure. In this context, research has shown interactions between NPs and PFAS, but the adsorption mechanism remains still unclear. In this work, a powerful synergic approach combining several computational and experimental techniques has been used to unveil the adsorption mechanism of perfluorooctanesulfonate (PFOS), which is one of the most widespread contaminants of emerging concerns (CECs) on PP nanoparticles. According to our DFT results, PFOS adsorbs onto the outer and inner surface of the nanoparticle, with a maximum adsorption energy of approximate to 18 kcal/mol and an adsorption mechanism mainly governed by dispersion forces between the two fragments. Batch experiments have confirmed that PFOS rapidly adsorbs on PP nanoparticle, showing that pH can reduce the adsorption capacity thus affecting the co-transport. Moreover, the dipole moment of the PFOS-nanoparticle complex has been found to be significantly larger as compared to the bare nanoparticle, resulting in amore pronounced transport in aqueous environment and making the PFOS-PP nanoparticle complex much more dangerous than the bare PP nanoparticle. Altogether, our results allowed us to disentangle the adsorption mechanism of PFAS on PP nanoparticles, which is a fundamental step to understand the co-occurrence of such dangerous pollutants in environmental matrices, as well as to obtain new information for toxicity and risk-models development.
Unveiling the adsorption mechanism of perfluorooctane sulfonate onto polypropylene nanoplastics: A combined theoretical and experimental investigation / Simonetti, F.; Mancini, M.; Gioia, V.; Zumpano, R.; Mazzei, F.; Frugis, A.; Migliorati, V.. - In: WATER RESEARCH. - ISSN 1879-2448. - 278:(2025), pp. 1-10. [10.1016/j.watres.2025.123324]
Unveiling the adsorption mechanism of perfluorooctane sulfonate onto polypropylene nanoplastics: A combined theoretical and experimental investigation
Simonetti F.Primo
;Zumpano R.;Mazzei F.;Migliorati V.
Ultimo
2025
Abstract
Polypropylene (PP) is a key component of nanoplastics detected globally in water, which can carry pollutants through co-transport. In this regard, the co-transport of perfluoroalkyl substances (PFAS) by nanoplastics (NPs) raises significant concern, as NPs can act as vectors that enhance PFAS uptake and bioaccumulation in organisms during co-exposure. In this context, research has shown interactions between NPs and PFAS, but the adsorption mechanism remains still unclear. In this work, a powerful synergic approach combining several computational and experimental techniques has been used to unveil the adsorption mechanism of perfluorooctanesulfonate (PFOS), which is one of the most widespread contaminants of emerging concerns (CECs) on PP nanoparticles. According to our DFT results, PFOS adsorbs onto the outer and inner surface of the nanoparticle, with a maximum adsorption energy of approximate to 18 kcal/mol and an adsorption mechanism mainly governed by dispersion forces between the two fragments. Batch experiments have confirmed that PFOS rapidly adsorbs on PP nanoparticle, showing that pH can reduce the adsorption capacity thus affecting the co-transport. Moreover, the dipole moment of the PFOS-nanoparticle complex has been found to be significantly larger as compared to the bare nanoparticle, resulting in amore pronounced transport in aqueous environment and making the PFOS-PP nanoparticle complex much more dangerous than the bare PP nanoparticle. Altogether, our results allowed us to disentangle the adsorption mechanism of PFAS on PP nanoparticles, which is a fundamental step to understand the co-occurrence of such dangerous pollutants in environmental matrices, as well as to obtain new information for toxicity and risk-models development.| File | Dimensione | Formato | |
|---|---|---|---|
|
Simonetti_Unveiling_2025.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.84 MB
Formato
Adobe PDF
|
2.84 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


