The message-passing mechanism underlying Graph Neural Networks (GNNs) is not naturally suited for heterophilic datasets, where adjacent nodes often have different labels. Most solutions to this problem remain confined to the task of node classification. In this article, we focus on the valuable task of link prediction under heterophily, an interesting problem for recommendation systems, social network analysis, and other applications. GNNs like GRAFF have improved node classification under heterophily by incorporating physics biases in the architecture. Similarly, we propose GRAFF-LP, an extension of GRAFF for link prediction. We show that GRAFF-LP effectively discriminates existing from non-existing edges by learning implicitly to separate the edge gradients. Based on this information, we propose a new readout function inspired by physics. Remarkably, this new function not only enhances the performance of GRAFF-LP but also improves that of other baseline models, leading us to reconsider how every link prediction experiment has been conducted so far. Finally, we provide evidence that even simple GNNs did not experience greater difficulty in predicting heterophilic links compared to homophilic ones. This leads us to believe in the necessity for heterophily measures specifically tailored for link prediction, distinct from those used in node classification. The code and appendix are available at https://github.com/difra100/Link_Prediction_with_PIGNN_IJCNN.

Link Prediction with Physics-Inspired Graph Neural Networks / Di Francesco, Andrea Giuseppe; Caso, Francesco; Bucarelli, Maria Sofia; Silvestri, Fabrizio. - (2025). (Intervento presentato al convegno IEEE International Joint Conference on Neural Networks tenutosi a Rome; Italy).

Link Prediction with Physics-Inspired Graph Neural Networks

Andrea Giuseppe Di Francesco
;
Francesco Caso;Maria Sofia Bucarelli;Fabrizio Silvestri
2025

Abstract

The message-passing mechanism underlying Graph Neural Networks (GNNs) is not naturally suited for heterophilic datasets, where adjacent nodes often have different labels. Most solutions to this problem remain confined to the task of node classification. In this article, we focus on the valuable task of link prediction under heterophily, an interesting problem for recommendation systems, social network analysis, and other applications. GNNs like GRAFF have improved node classification under heterophily by incorporating physics biases in the architecture. Similarly, we propose GRAFF-LP, an extension of GRAFF for link prediction. We show that GRAFF-LP effectively discriminates existing from non-existing edges by learning implicitly to separate the edge gradients. Based on this information, we propose a new readout function inspired by physics. Remarkably, this new function not only enhances the performance of GRAFF-LP but also improves that of other baseline models, leading us to reconsider how every link prediction experiment has been conducted so far. Finally, we provide evidence that even simple GNNs did not experience greater difficulty in predicting heterophilic links compared to homophilic ones. This leads us to believe in the necessity for heterophily measures specifically tailored for link prediction, distinct from those used in node classification. The code and appendix are available at https://github.com/difra100/Link_Prediction_with_PIGNN_IJCNN.
2025
IEEE International Joint Conference on Neural Networks
Graph Neural Networks; Link Prediction; Heterophilic Graphs
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Link Prediction with Physics-Inspired Graph Neural Networks / Di Francesco, Andrea Giuseppe; Caso, Francesco; Bucarelli, Maria Sofia; Silvestri, Fabrizio. - (2025). (Intervento presentato al convegno IEEE International Joint Conference on Neural Networks tenutosi a Rome; Italy).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1747341
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact