This paper proposes a novel two-part random-effects expectile regression model for longitudinal data. Expectiles provides a more detailed picture of the conditional distribution of the response than averages and offer several advantages over classical quantiles. Time-constant heterogeneity is modeled flexibly through a bivariate discrete distribution of the random effects, linking the binary decision process and the positive outcomes. Model parameters are estimated in a Maximum Likelihood approach via an Expectation–Maximization algorithm using the Asymmetric Normal distribution as the working likelihood. The practical advantages of our approach are illustrated with an application on university students’ achievement followed over three years.

Two-part expectile regression models for longitudinal data: an application to students’ academic performance / Saiz, Maria; Merlo, Luca; Petrella, Lea. - (2025), pp. 292-298. (Intervento presentato al convegno Statistics for Innovation tenutosi a Genoa, Italy) [10.1007/978-3-031-96033-8].

Two-part expectile regression models for longitudinal data: an application to students’ academic performance

Maria Saiz
;
Lea Petrella
2025

Abstract

This paper proposes a novel two-part random-effects expectile regression model for longitudinal data. Expectiles provides a more detailed picture of the conditional distribution of the response than averages and offer several advantages over classical quantiles. Time-constant heterogeneity is modeled flexibly through a bivariate discrete distribution of the random effects, linking the binary decision process and the positive outcomes. Model parameters are estimated in a Maximum Likelihood approach via an Expectation–Maximization algorithm using the Asymmetric Normal distribution as the working likelihood. The practical advantages of our approach are illustrated with an application on university students’ achievement followed over three years.
2025
Statistics for Innovation
expectile regression; random effects models; students’ performance
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Two-part expectile regression models for longitudinal data: an application to students’ academic performance / Saiz, Maria; Merlo, Luca; Petrella, Lea. - (2025), pp. 292-298. (Intervento presentato al convegno Statistics for Innovation tenutosi a Genoa, Italy) [10.1007/978-3-031-96033-8].
File allegati a questo prodotto
File Dimensione Formato  
Saiz_indice-frontespizio-SIS_2025.pdf

solo gestori archivio

Note: Indice e frontespizio del volume
Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 328.12 kB
Formato Adobe PDF
328.12 kB Adobe PDF   Contatta l'autore
Saiz_two-part-expectile_2025.pdf

solo gestori archivio

Note: paper
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 393.74 kB
Formato Adobe PDF
393.74 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1747234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact