Massive primordial halos exposed to moderate UV backgrounds are the potential birthplaces of supermassive black holes. In these halos, an initially isothermal collapse will occur, leading to high accretion rates of ~0.1 M⊙ yr-1. During the collapse, the gas in the interior will turn into a molecular state, and will form accretion disk in order to conserve angular momentum. We consider here the structure of such an accretion disk and the role of viscous heating in the presence of high accretion rates for a central star of 10, 100, and 104 M⊙. Our results show that the temperature in the disk increases considerably due to viscous heating, leading to a transition from the molecular to the atomic cooling phase. We found that the atomic cooling regime may extend out to several 100 AU for a 104 M⊙ central star and that it provides substantial support to stabilize the disk. It therefore favors the formation of a massive central object. The comparison of clump migration and contraction time scales shows that stellar feedback from these clumps may occur during the later stages of the evolution. Overall, viscous heating provides an important pathway to obtain an atomic gas phase within the center of the halo, and helps in the formation of very massive objects. The massive object may collapse to form a massive black hole of about ≥104 M⊙.

{The formation of supermassive black holes in rapidly rotating disks} / Latif, M. ~a.; Schleicher, Dominik Reinhold Georg. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 578:(2015). [10.1051/0004-6361/201525855]

{The formation of supermassive black holes in rapidly rotating disks}

Schleicher, Dominik Reinhold Georg
2015

Abstract

Massive primordial halos exposed to moderate UV backgrounds are the potential birthplaces of supermassive black holes. In these halos, an initially isothermal collapse will occur, leading to high accretion rates of ~0.1 M⊙ yr-1. During the collapse, the gas in the interior will turn into a molecular state, and will form accretion disk in order to conserve angular momentum. We consider here the structure of such an accretion disk and the role of viscous heating in the presence of high accretion rates for a central star of 10, 100, and 104 M⊙. Our results show that the temperature in the disk increases considerably due to viscous heating, leading to a transition from the molecular to the atomic cooling phase. We found that the atomic cooling regime may extend out to several 100 AU for a 104 M⊙ central star and that it provides substantial support to stabilize the disk. It therefore favors the formation of a massive central object. The comparison of clump migration and contraction time scales shows that stellar feedback from these clumps may occur during the later stages of the evolution. Overall, viscous heating provides an important pathway to obtain an atomic gas phase within the center of the halo, and helps in the formation of very massive objects. The massive object may collapse to form a massive black hole of about ≥104 M⊙.
2015
black hole physics; methods: analytical; early Universe; quasars: supermassive black holes; cosmology: theory; accretion; accretion disks; Astrophysics - Astrophysics of Galaxies; Astrophysics - Cosmology and Nongalactic Astrophysics
01 Pubblicazione su rivista::01a Articolo in rivista
{The formation of supermassive black holes in rapidly rotating disks} / Latif, M. ~a.; Schleicher, Dominik Reinhold Georg. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 578:(2015). [10.1051/0004-6361/201525855]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1746263
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact