The purpose of this paper is to present a fully algebraic formalism for the construction and reduction of -algebras of observables inspired by multisymplectic geometry, using Gerstenhaber algebras, BV-modules, and the constraint triple formalism. In the “geometric case”, we reconstruct and conceptually explain the recent results of [7].

Multisymplectic observable reduction using constraint triples / Miti, Antonio Michele; Ryvkin, Leonid. - In: DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS. - ISSN 0926-2245. - (2025). [10.1016/j.difgeo.2025.102272]

Multisymplectic observable reduction using constraint triples

Antonio Michele Miti;
2025

Abstract

The purpose of this paper is to present a fully algebraic formalism for the construction and reduction of -algebras of observables inspired by multisymplectic geometry, using Gerstenhaber algebras, BV-modules, and the constraint triple formalism. In the “geometric case”, we reconstruct and conceptually explain the recent results of [7].
2025
Multisymplectic manifold; constraint triple; gerstenhaber algebra; L∞-algebra; reduction
01 Pubblicazione su rivista::01a Articolo in rivista
Multisymplectic observable reduction using constraint triples / Miti, Antonio Michele; Ryvkin, Leonid. - In: DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS. - ISSN 0926-2245. - (2025). [10.1016/j.difgeo.2025.102272]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1746208
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact