We study the differential inclusion Du belongs to K, where K is an unbounded and rotationally invariant subset of the real symmetric matrices. We exhibit a subset of all possible average fields. The corresponding microgeometries are laminates of infinite rank. The problem originated in the search for the effective conductivity of polycrystalline composites. In the latter context, our result is an improvement of the previously known bounds established by Nesi and Milton (J Mech Phys Solids 4:525–542, 1991), hence proving the optimality of a new full-measure class of microgeometries.

Differential inclusions and polycrystals / Albin, N.; Nesi, V.; Palombaro, M.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1432-0835. - 64:7(2025), pp. 1-28. [10.1007/s00526-025-03067-6]

Differential inclusions and polycrystals

Nesi V.
Membro del Collaboration Group
;
Palombaro M.
Membro del Collaboration Group
2025

Abstract

We study the differential inclusion Du belongs to K, where K is an unbounded and rotationally invariant subset of the real symmetric matrices. We exhibit a subset of all possible average fields. The corresponding microgeometries are laminates of infinite rank. The problem originated in the search for the effective conductivity of polycrystalline composites. In the latter context, our result is an improvement of the previously known bounds established by Nesi and Milton (J Mech Phys Solids 4:525–542, 1991), hence proving the optimality of a new full-measure class of microgeometries.
2025
Polycrystals; laminates; microgeometries
01 Pubblicazione su rivista::01a Articolo in rivista
Differential inclusions and polycrystals / Albin, N.; Nesi, V.; Palombaro, M.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1432-0835. - 64:7(2025), pp. 1-28. [10.1007/s00526-025-03067-6]
File allegati a questo prodotto
File Dimensione Formato  
Albin_Differential-inclusions_2025.pdf

solo gestori archivio

Note: Published
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.8 MB
Formato Adobe PDF
4.8 MB Adobe PDF   Contatta l'autore
Albin_preprint_Differential-inclusions_2025.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1746097
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact