We study the differential inclusion Du belongs to K, where K is an unbounded and rotationally invariant subset of the real symmetric matrices. We exhibit a subset of all possible average fields. The corresponding microgeometries are laminates of infinite rank. The problem originated in the search for the effective conductivity of polycrystalline composites. In the latter context, our result is an improvement of the previously known bounds established by Nesi and Milton (J Mech Phys Solids 4:525–542, 1991), hence proving the optimality of a new full-measure class of microgeometries.
Differential inclusions and polycrystals / Albin, N.; Nesi, V.; Palombaro, M.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1432-0835. - 64:7(2025), pp. 1-28. [10.1007/s00526-025-03067-6]
Differential inclusions and polycrystals
Nesi V.Membro del Collaboration Group
;Palombaro M.
Membro del Collaboration Group
2025
Abstract
We study the differential inclusion Du belongs to K, where K is an unbounded and rotationally invariant subset of the real symmetric matrices. We exhibit a subset of all possible average fields. The corresponding microgeometries are laminates of infinite rank. The problem originated in the search for the effective conductivity of polycrystalline composites. In the latter context, our result is an improvement of the previously known bounds established by Nesi and Milton (J Mech Phys Solids 4:525–542, 1991), hence proving the optimality of a new full-measure class of microgeometries.| File | Dimensione | Formato | |
|---|---|---|---|
|
Albin_Differential-inclusions_2025.pdf
solo gestori archivio
Note: Published
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.8 MB
Formato
Adobe PDF
|
4.8 MB | Adobe PDF | Contatta l'autore |
|
Albin_preprint_Differential-inclusions_2025.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


