For systems of evolutionary partial differential equations (PDEs), the tau-structure is an important notion that originated from the deep relation between integrable systems and quantum field theories. We show that, under a certain non-degeneracy condition, existence of a tau-structure implies integrability. As an example, we apply this principle to provide a new proof of the integrability of the Drinfeld–Sokolov (DS) hierarchy associated with an arbitrary Kac–Moody algebra and a choice of a vertex of its Dynkin diagram.

Remarks on intersection numbers and integrable hierarchies. II. Tau-structure / Valeri, Daniele; Yang, Di. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A. - ISSN 1364-5021. - 481:2315(2025). [10.1098/rspa.2024.0908]

Remarks on intersection numbers and integrable hierarchies. II. Tau-structure

Valeri, Daniele;
2025

Abstract

For systems of evolutionary partial differential equations (PDEs), the tau-structure is an important notion that originated from the deep relation between integrable systems and quantum field theories. We show that, under a certain non-degeneracy condition, existence of a tau-structure implies integrability. As an example, we apply this principle to provide a new proof of the integrability of the Drinfeld–Sokolov (DS) hierarchy associated with an arbitrary Kac–Moody algebra and a choice of a vertex of its Dynkin diagram.
2025
Drinfeld-Sokolov hierarchies; integrable systems; tau-functions
01 Pubblicazione su rivista::01a Articolo in rivista
Remarks on intersection numbers and integrable hierarchies. II. Tau-structure / Valeri, Daniele; Yang, Di. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A. - ISSN 1364-5021. - 481:2315(2025). [10.1098/rspa.2024.0908]
File allegati a questo prodotto
File Dimensione Formato  
Valeri_Remarks_2025.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 438.61 kB
Formato Adobe PDF
438.61 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1745930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact