This study explores the structural transitions and aggregation behaviour of recombinant β- and γ-synucleins from five vertebrate species—Cyprinus carpio, Danio rerio, Xenopus laevis, Anolis carolinensis, and Homo sapiens—using thioflavin T fluorescence and circular dichroism spectroscopy, with and without copper ions. Although synucleins are well-conserved proteins among vertebrates, species-specific differences in amino acid composition and predicted secondary structures were observed, particularly within β-strand-forming regions. During a six-day incubation, human β-synuclein exhibited a time-dependent increase in β-sheet-rich structures, while non-mammalian β-synucleins showed limited variation. In contrast, γ-synucleins from all species displayed greater aggregation propensity, with variations in kinetics and magnitude. The presence of copper reduced the rate of aggregation in human β-synuclein, likely due to high-affinity metal-binding sites, whereas γ-synuclein aggregation was only mildly affected. Notably, copper enhanced late-phase aggregation in A. carolinensis β-synuclein. These findings suggest that sequence divergence among synuclein isoforms may underlie species-specific aggregation mechanisms and metal sensitivity. The differential aggregation behaviour observed across taxa may reflect evolutionary adaptations in synuclein function and folding propensity, with implications for understanding the molecular basis of synucleinopathies and their potential modulation by metal ions.

Comparative analysis of aggregation of β- and γ-Synucleins in vertebrates / Bonaccorsi Di Patti, Maria Carmela; Meoni, Martina; Toni, Mattia. - In: BIOMOLECULES. - ISSN 2218-273X. - (2025). [10.3390/biom15091231]

Comparative analysis of aggregation of β- and γ-Synucleins in vertebrates

Maria Carmela Bonaccorsi di Patti
Primo
;
Martina Meoni
Secondo
;
Mattia Toni
Ultimo
2025

Abstract

This study explores the structural transitions and aggregation behaviour of recombinant β- and γ-synucleins from five vertebrate species—Cyprinus carpio, Danio rerio, Xenopus laevis, Anolis carolinensis, and Homo sapiens—using thioflavin T fluorescence and circular dichroism spectroscopy, with and without copper ions. Although synucleins are well-conserved proteins among vertebrates, species-specific differences in amino acid composition and predicted secondary structures were observed, particularly within β-strand-forming regions. During a six-day incubation, human β-synuclein exhibited a time-dependent increase in β-sheet-rich structures, while non-mammalian β-synucleins showed limited variation. In contrast, γ-synucleins from all species displayed greater aggregation propensity, with variations in kinetics and magnitude. The presence of copper reduced the rate of aggregation in human β-synuclein, likely due to high-affinity metal-binding sites, whereas γ-synuclein aggregation was only mildly affected. Notably, copper enhanced late-phase aggregation in A. carolinensis β-synuclein. These findings suggest that sequence divergence among synuclein isoforms may underlie species-specific aggregation mechanisms and metal sensitivity. The differential aggregation behaviour observed across taxa may reflect evolutionary adaptations in synuclein function and folding propensity, with implications for understanding the molecular basis of synucleinopathies and their potential modulation by metal ions.
2025
β-synuclein; γ-synuclein; copper ions; thioflavin T fluorescence; circular dichroism; vertebrates
01 Pubblicazione su rivista::01a Articolo in rivista
Comparative analysis of aggregation of β- and γ-Synucleins in vertebrates / Bonaccorsi Di Patti, Maria Carmela; Meoni, Martina; Toni, Mattia. - In: BIOMOLECULES. - ISSN 2218-273X. - (2025). [10.3390/biom15091231]
File allegati a questo prodotto
File Dimensione Formato  
Bonaccorsi di Patti_Comparative_2025.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 4.39 MB
Formato Adobe PDF
4.39 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1745885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact