The periodic unfolding method is extended to the Orlicz setting and used to prove a homogenization result for non-convex integral energies defined on vector-valued configurations in the Orlicz-Sobolev setting. In particular it extends to wider classes of function spaces and integrands the results contained in Cioranescu et al. (2006) [13].
Homogenization of non-convex integral energies with Orlicz growth via periodic unfolding / Fotso Tachago, Joel; Gargiulo, Guiliano; Nnang, Hubert; Zappale, Elvira. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - (2025). [10.1016/j.jmaa.2025.129705]
Homogenization of non-convex integral energies with Orlicz growth via periodic unfolding
Elvira Zappale
2025
Abstract
The periodic unfolding method is extended to the Orlicz setting and used to prove a homogenization result for non-convex integral energies defined on vector-valued configurations in the Orlicz-Sobolev setting. In particular it extends to wider classes of function spaces and integrands the results contained in Cioranescu et al. (2006) [13].File allegati a questo prodotto
| File | Dimensione | Formato | |
|---|---|---|---|
|
Tachago_homogenization_2025.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
929.26 kB
Formato
Adobe PDF
|
929.26 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


