The periodic unfolding method is extended to the Orlicz setting and used to prove a homogenization result for non-convex integral energies defined on vector-valued configurations in the Orlicz-Sobolev setting. In particular it extends to wider classes of function spaces and integrands the results contained in Cioranescu et al. (2006) [13].

Homogenization of non-convex integral energies with Orlicz growth via periodic unfolding / Fotso Tachago, Joel; Gargiulo, Guiliano; Nnang, Hubert; Zappale, Elvira. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - (2025). [10.1016/j.jmaa.2025.129705]

Homogenization of non-convex integral energies with Orlicz growth via periodic unfolding

Elvira Zappale
2025

Abstract

The periodic unfolding method is extended to the Orlicz setting and used to prove a homogenization result for non-convex integral energies defined on vector-valued configurations in the Orlicz-Sobolev setting. In particular it extends to wider classes of function spaces and integrands the results contained in Cioranescu et al. (2006) [13].
2025
HomogenizationPeriodic unfolding methodOrlicz spacesTwo-scale convergence
01 Pubblicazione su rivista::01a Articolo in rivista
Homogenization of non-convex integral energies with Orlicz growth via periodic unfolding / Fotso Tachago, Joel; Gargiulo, Guiliano; Nnang, Hubert; Zappale, Elvira. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - (2025). [10.1016/j.jmaa.2025.129705]
File allegati a questo prodotto
File Dimensione Formato  
Tachago_homogenization_2025.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 929.26 kB
Formato Adobe PDF
929.26 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1745495
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact