Millions of people worldwide are affected by neurodegenerative disorders (NDs), which include a broad range of clinical ailments that affect the brain or peripheral nervous system, including Alzheimer’s disease (AD), Parkinson's disease (PD), Huntington's disease, etc. Neuronal cell death in NDs is often linked to oxidative stress; thus, antioxidant treatment can combat oxidative cell damage, and this strategy has been studied in neurodegenerative processes. Over the past 10 years, we have witnessed intense research activity on the biological potential of human monoamine oxidase (hMAO) inhibitors that have been associated with the prevention of oxidative stress and inflammation. These inhibitors have emerged as promising therapeutic agents, especially in the treatment of neurodegenerative diseases (NDs), where their core activity may help mitigate disease progression. An overview of the current state of numerous scaffolds, such as chromones, coumarins, chalcones, propargylamines, benzothiazoles, aminoisoquinolines, and the natural compounds, including ferulic acid, resveratrol, and chrysin, which combine antioxidant capability and hMAO inhibition is given in this review, with particular attention given to each scaffold's mechanism of action and structure-activity relationships (SARs), which are thoroughly discussed. Focusing on the dual mechanism of action, combining inhibition and antioxidant properties, as a potential therapy for neurodegenerative diseases, we have reviewed the different chemical classes of multi-target-directed ligand (MTDL) inhibitors developed within this framework. Other central nervous system (CNS)-related enzymes, such as cholinesterases, carbonic anhydrases, and BACE-1, have also been explored as targets in the MTDL strategy. By understanding their biological activity, medicinal chemists can better comprehend biological activity and recommend more effective and specific ND treatments.

Potential of MAO-B Inhibitors with Multi-Target Inhibition and Antioxidant Properties for the Treatment of Neurodegenerative Disorders / A. Shaldam, Moataz; Carradori, Simone; Melfi, Francesco; Guglielmi, Paolo; Diomede, Francesca; Piattelli, Maurizio; O. Tawfik, Haytham. - In: MINI-REVIEWS IN MEDICINAL CHEMISTRY. - ISSN 1389-5575. - 25:(2025). [10.2174/0113895575392491250630195630]

Potential of MAO-B Inhibitors with Multi-Target Inhibition and Antioxidant Properties for the Treatment of Neurodegenerative Disorders

Carradori, Simone;Guglielmi, Paolo;
2025

Abstract

Millions of people worldwide are affected by neurodegenerative disorders (NDs), which include a broad range of clinical ailments that affect the brain or peripheral nervous system, including Alzheimer’s disease (AD), Parkinson's disease (PD), Huntington's disease, etc. Neuronal cell death in NDs is often linked to oxidative stress; thus, antioxidant treatment can combat oxidative cell damage, and this strategy has been studied in neurodegenerative processes. Over the past 10 years, we have witnessed intense research activity on the biological potential of human monoamine oxidase (hMAO) inhibitors that have been associated with the prevention of oxidative stress and inflammation. These inhibitors have emerged as promising therapeutic agents, especially in the treatment of neurodegenerative diseases (NDs), where their core activity may help mitigate disease progression. An overview of the current state of numerous scaffolds, such as chromones, coumarins, chalcones, propargylamines, benzothiazoles, aminoisoquinolines, and the natural compounds, including ferulic acid, resveratrol, and chrysin, which combine antioxidant capability and hMAO inhibition is given in this review, with particular attention given to each scaffold's mechanism of action and structure-activity relationships (SARs), which are thoroughly discussed. Focusing on the dual mechanism of action, combining inhibition and antioxidant properties, as a potential therapy for neurodegenerative diseases, we have reviewed the different chemical classes of multi-target-directed ligand (MTDL) inhibitors developed within this framework. Other central nervous system (CNS)-related enzymes, such as cholinesterases, carbonic anhydrases, and BACE-1, have also been explored as targets in the MTDL strategy. By understanding their biological activity, medicinal chemists can better comprehend biological activity and recommend more effective and specific ND treatments.
2025
MAO inhibitors; antioxidants; chalcone; chromone; coumarin; neurodegenerative disorders; propargylamine
01 Pubblicazione su rivista::01g Articolo di rassegna (Review)
Potential of MAO-B Inhibitors with Multi-Target Inhibition and Antioxidant Properties for the Treatment of Neurodegenerative Disorders / A. Shaldam, Moataz; Carradori, Simone; Melfi, Francesco; Guglielmi, Paolo; Diomede, Francesca; Piattelli, Maurizio; O. Tawfik, Haytham. - In: MINI-REVIEWS IN MEDICINAL CHEMISTRY. - ISSN 1389-5575. - 25:(2025). [10.2174/0113895575392491250630195630]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1745348
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact