We present an Adaptive Parametrized-Background Data-Weak (APBDW) approach to the variational data assimilation (state estimation) problem. The approach is based on the Tikhonov regularization of the PBDW formulation [Y Maday, AT Patera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933-965], and exploits the connection between PBDW and kernel methods for regression. An adaptive procedure is presented to handle the experimental noise. A priori and a posteriori estimates for the L2 state-estimation error motivate the approach and guide the adaptive procedure. We present results for two synthetic model problems to illustrate the elements of the methodology. We also consider an experimental thermal patch configuration to demonstrate the applicability of our approach to real physical systems.

An adaptive parametrized-background data-weak approach to variational data assimilation / Taddei, T. - In: ESAIM. MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS. - ISSN 2822-7840. - 42:2(2017), pp. 214-243. [10.1051/m2an/2017005]

An adaptive parametrized-background data-weak approach to variational data assimilation

Taddei T
2017

Abstract

We present an Adaptive Parametrized-Background Data-Weak (APBDW) approach to the variational data assimilation (state estimation) problem. The approach is based on the Tikhonov regularization of the PBDW formulation [Y Maday, AT Patera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933-965], and exploits the connection between PBDW and kernel methods for regression. An adaptive procedure is presented to handle the experimental noise. A priori and a posteriori estimates for the L2 state-estimation error motivate the approach and guide the adaptive procedure. We present results for two synthetic model problems to illustrate the elements of the methodology. We also consider an experimental thermal patch configuration to demonstrate the applicability of our approach to real physical systems.
2017
variational data assimilation; parametrized partial differential equations; model order reduction; kernel methods
01 Pubblicazione su rivista::01a Articolo in rivista
An adaptive parametrized-background data-weak approach to variational data assimilation / Taddei, T. - In: ESAIM. MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS. - ISSN 2822-7840. - 42:2(2017), pp. 214-243. [10.1051/m2an/2017005]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1745026
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact