We propose a general—i.e., independent of the underlying equation—registration method for parameterized model order reduction. Given the spatial domain $Ømega \subset \mathbbR^d$ and the manifold $\mathcalM_u= { u_\mu : \mu ın \mathcalP }$ associated with the parameter domain $\mathcalP \subset \mathbbR^P$ and the parametric field $\mu \mapsto u_\mu ın L^2(Ømega)$, the algorithm takes as input a set of snapshots ${ u^k }_k=1^n_\rm train \subset \mathcalM_u$ and returns a parameter-dependent bijective mapping $\Phi: Ømega \times \mathcalP \to \mathbbR^d$: the mapping is designed to make the mapped manifold ${ u_\mu \circ \Phi_\mu: \, \mu ın \mathcalP }$ more suited for linear compression methods. We apply the registration procedure, in combination with a linear compression method, to devise low-dimensional representations of solution manifolds with slowly decaying Kolmogorov $N$-widths; we also consider the application to problems in parameterized geometries. We present a theoretical result to show the mathematical rigor of the registration procedure. We further present numerical results for several two-dimensional problems, to empirically demonstrate the effectivity of our proposal.

A Registration Method for Model Order Reduction: Data Compression and Geometry Reduction / Taddei, T. - In: SIAM JOURNAL ON SCIENTIFIC COMPUTING. - ISSN 1095-7197. - 42:2(2020), pp. 214-243. [10.1137/19M1271270]

A Registration Method for Model Order Reduction: Data Compression and Geometry Reduction

Taddei T
2020

Abstract

We propose a general—i.e., independent of the underlying equation—registration method for parameterized model order reduction. Given the spatial domain $Ømega \subset \mathbbR^d$ and the manifold $\mathcalM_u= { u_\mu : \mu ın \mathcalP }$ associated with the parameter domain $\mathcalP \subset \mathbbR^P$ and the parametric field $\mu \mapsto u_\mu ın L^2(Ømega)$, the algorithm takes as input a set of snapshots ${ u^k }_k=1^n_\rm train \subset \mathcalM_u$ and returns a parameter-dependent bijective mapping $\Phi: Ømega \times \mathcalP \to \mathbbR^d$: the mapping is designed to make the mapped manifold ${ u_\mu \circ \Phi_\mu: \, \mu ın \mathcalP }$ more suited for linear compression methods. We apply the registration procedure, in combination with a linear compression method, to devise low-dimensional representations of solution manifolds with slowly decaying Kolmogorov $N$-widths; we also consider the application to problems in parameterized geometries. We present a theoretical result to show the mathematical rigor of the registration procedure. We further present numerical results for several two-dimensional problems, to empirically demonstrate the effectivity of our proposal.
2020
parameterized partial differential equations; model order reduction; data compression; geometry registration
01 Pubblicazione su rivista::01a Articolo in rivista
A Registration Method for Model Order Reduction: Data Compression and Geometry Reduction / Taddei, T. - In: SIAM JOURNAL ON SCIENTIFIC COMPUTING. - ISSN 1095-7197. - 42:2(2020), pp. 214-243. [10.1137/19M1271270]
File allegati a questo prodotto
File Dimensione Formato  
Taddei_A-registration_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1745013
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? ND
social impact