Next-generation Earth-based gravitational-wave (GW) detectors, such as the Einstein Telescope and Cosmic Explorer, will be at least an order of magnitude larger and more sensitive than current ones. Their quantum noise reduction systems, using linear filter cavities, will also scale up. To reduce system size and complexity, the EPR conditional squeezing scheme has been proposed as a cost-effective alternative to km-long filter cavities, while also aiming at lower optical losses. This experiment is designed to validate EPR conditional squeezing in a suspended small-scale interferometer limited by quantum radiation pressure noise, in the frequency band relevant to large-scale GW observatories, ranging from a few tens of Hz to a few kHz. It incorporates advanced methods such as reflective mode-matching telescopes and an automated data acquisition system.

Einstein–Podolsky–Rosen squeezing experiment for future gravitational-wave detectors / De Marco, F.; Di Pace, S.; Ahn, H.; Ali, W.; Bawaj, M.; Garaventa, B.; Kim, C. H.; Laudenzi, P.; Lee, S.; Lunghini, L.; Naticchioni, L.; Park, B. J.; Svizzeretto, A.; De Laurentis, M.; Lee, S.; Sequino, V.. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - 1080:(2025), pp. 1-4. (Intervento presentato al convegno Vienna conference on instrumentation 2025 tenutosi a Vienna; Austria) [10.1016/j.nima.2025.170644].

Einstein–Podolsky–Rosen squeezing experiment for future gravitational-wave detectors

De Marco, F.
Primo
;
Di Pace, S.;Laudenzi, P.;Lunghini, L.;Naticchioni, L.;
2025

Abstract

Next-generation Earth-based gravitational-wave (GW) detectors, such as the Einstein Telescope and Cosmic Explorer, will be at least an order of magnitude larger and more sensitive than current ones. Their quantum noise reduction systems, using linear filter cavities, will also scale up. To reduce system size and complexity, the EPR conditional squeezing scheme has been proposed as a cost-effective alternative to km-long filter cavities, while also aiming at lower optical losses. This experiment is designed to validate EPR conditional squeezing in a suspended small-scale interferometer limited by quantum radiation pressure noise, in the frequency band relevant to large-scale GW observatories, ranging from a few tens of Hz to a few kHz. It incorporates advanced methods such as reflective mode-matching telescopes and an automated data acquisition system.
2025
Vienna conference on instrumentation 2025
Einstein telescope; gravitational waves; quantum optics; squeezing
04 Pubblicazione in atti di convegno::04c Atto di convegno in rivista
Einstein–Podolsky–Rosen squeezing experiment for future gravitational-wave detectors / De Marco, F.; Di Pace, S.; Ahn, H.; Ali, W.; Bawaj, M.; Garaventa, B.; Kim, C. H.; Laudenzi, P.; Lee, S.; Lunghini, L.; Naticchioni, L.; Park, B. J.; Svizzeretto, A.; De Laurentis, M.; Lee, S.; Sequino, V.. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - 1080:(2025), pp. 1-4. (Intervento presentato al convegno Vienna conference on instrumentation 2025 tenutosi a Vienna; Austria) [10.1016/j.nima.2025.170644].
File allegati a questo prodotto
File Dimensione Formato  
DeMarco_Einstein_2025.pdf

accesso aperto

Note: Atto di convegno in volume
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1744949
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact