We address a generalization of the bandit with knapsacks problem, where a learner aims to maximize rewards while satisfying an arbitrary set of long-term constraints. Our goal is to design best-of-both-worlds algorithms that perform optimally under both stochastic and adversarial constraints. Previous works address this problem via primal-dual methods, and require some stringent assumptions, namely the Slater's condition, and in adversarial settings, they either assume knowledge of a lower bound on the Slater's parameter, or impose strong requirements on the primal and dual regret minimizers such as requiring weak adaptivity. We propose an alternative and more natural approach based on optimistic estimations of the constraints. Surprisingly, we show that estimating the constraints with an UCB-like approach guarantees optimal performances. Our algorithm consists of two main components: (i) a regret minimizer working on moving strategy sets and (ii) an estimate of the feasible set as an optimistic weighted empirical mean of previous samples. The key challenge in this approach is designing adaptive weights that meet the different requirements for stochastic and adversarial constraints. Our algorithm is significantly simpler than previous approaches, and has a cleaner analysis. Moreover, ours is the first best-of-both-worlds algorithm providing bounds logarithmic in the number of constraints. Additionally, in stochastic settings, it provides Oe(√T) regret without Slater's condition.

Beyond Primal-Dual Methods in Bandits with Stochastic and Adversarial Constraints / Bernasconi, M.; Castiglioni, M.; Celli, A.; Fusco, F.. - 37:(2024). ( Advances in Neural Information Processing Systems (was NIPS) can ).

Beyond Primal-Dual Methods in Bandits with Stochastic and Adversarial Constraints

Fusco F.
2024

Abstract

We address a generalization of the bandit with knapsacks problem, where a learner aims to maximize rewards while satisfying an arbitrary set of long-term constraints. Our goal is to design best-of-both-worlds algorithms that perform optimally under both stochastic and adversarial constraints. Previous works address this problem via primal-dual methods, and require some stringent assumptions, namely the Slater's condition, and in adversarial settings, they either assume knowledge of a lower bound on the Slater's parameter, or impose strong requirements on the primal and dual regret minimizers such as requiring weak adaptivity. We propose an alternative and more natural approach based on optimistic estimations of the constraints. Surprisingly, we show that estimating the constraints with an UCB-like approach guarantees optimal performances. Our algorithm consists of two main components: (i) a regret minimizer working on moving strategy sets and (ii) an estimate of the feasible set as an optimistic weighted empirical mean of previous samples. The key challenge in this approach is designing adaptive weights that meet the different requirements for stochastic and adversarial constraints. Our algorithm is significantly simpler than previous approaches, and has a cleaner analysis. Moreover, ours is the first best-of-both-worlds algorithm providing bounds logarithmic in the number of constraints. Additionally, in stochastic settings, it provides Oe(√T) regret without Slater's condition.
2024
Advances in Neural Information Processing Systems (was NIPS)
Bandits with Knapsack; online learning; adversarial constraints
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Beyond Primal-Dual Methods in Bandits with Stochastic and Adversarial Constraints / Bernasconi, M.; Castiglioni, M.; Celli, A.; Fusco, F.. - 37:(2024). ( Advances in Neural Information Processing Systems (was NIPS) can ).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1744851
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact