Maximizing monotone submodular functions under a matroid constraint is a classic algorithmic problem with multiple applications in data mining and machine learning. We study this significant problem in the fully dynamic setting, where elements can be both inserted and deleted in real-time. Our main result is a randomized algorithm that maintains an efficient data structure with an O ( :Y2 ) amortized update time (in the number of insertions and deletions) and yields a (4 + O ( pound ))-approximate solution with respect to the dynamic optimum, where k is the rank of the matroid.

Fully Dynamic Submodular Maximization over Matroids / Dütting, P.; Fusco, F.; Lattanzi, S.; Norouzi-Fard, A.; Zadimoghaddam, M.. - In: ACM TRANSACTIONS ON ALGORITHMS. - ISSN 1549-6325. - 21:1(2024), pp. 1-23. [10.1145/3698397]

Fully Dynamic Submodular Maximization over Matroids

Fusco F.
;
2024

Abstract

Maximizing monotone submodular functions under a matroid constraint is a classic algorithmic problem with multiple applications in data mining and machine learning. We study this significant problem in the fully dynamic setting, where elements can be both inserted and deleted in real-time. Our main result is a randomized algorithm that maintains an efficient data structure with an O ( :Y2 ) amortized update time (in the number of insertions and deletions) and yields a (4 + O ( pound ))-approximate solution with respect to the dynamic optimum, where k is the rank of the matroid.
2024
Submodular Maximization; Matroids; Fully Dynamic Algorithms
01 Pubblicazione su rivista::01a Articolo in rivista
Fully Dynamic Submodular Maximization over Matroids / Dütting, P.; Fusco, F.; Lattanzi, S.; Norouzi-Fard, A.; Zadimoghaddam, M.. - In: ACM TRANSACTIONS ON ALGORITHMS. - ISSN 1549-6325. - 21:1(2024), pp. 1-23. [10.1145/3698397]
File allegati a questo prodotto
File Dimensione Formato  
Dutting_Fully-Dynamic_2024.pdf

accesso aperto

Note: https://hdl.handle.net/11573/1693542
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 916.96 kB
Formato Adobe PDF
916.96 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1744847
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact