Hydrolates are aromatic aqueous solutions saturated with volatile water-soluble compounds of essential oil. Despite their potential, hydrolates remain less explored than essential oils. In this work, the hydrolate of Pelargonium odoratissimum (L.) L’Hér. has been analyzed by multiple analytical techniques in order to describe its chemical composition. Headspace (HS-) and Direct Immersion-Solid Phase Microextraction-Gas Chromatography/ Mass spectrometry (DI-SPME-GC/MS) and Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) were employed to reveal the VOC emission from the hydrolate. Further, a direct injection of the pure hydrolate and of the hydrolate after extraction with hexane was performed by Large-Volume Injection Gas Chromatography/Mass Spectrometry (LVI-GC/MS) and GC/MS. The results obtained by HS- and DI-SPMEGC/ MS highlighted a nearly overlapping chemical profile with linalool, isomenthone, and α-terpineol as the main volatiles. On the other hand, analysis of the hydrolate by GC/MS after solvent extraction revealed a lower overall number of compounds but allowed the detection of thujone and cis-linalool oxide. In comparison, LVI-GC/MS was the technique that allowed the identification of a higher number of volatiles with citronellol, linalool, and α-terpineol as the principal compounds. Finally, PTR-ToF-MS was a fundamental approach to quantify and evaluate total terpene emissions from this complex matrix starting from low-molecular-weight compounds such as acetylene, methanol, acetaldehyde, acetone, and ethanol, which were the most abundant. Among the detected compounds, dimethyl sulfide and small amounts of dimethyl-furan and 2-butylfuran were also identified. Overall, the findings showed that the hydrolate was rich in monoterpene compounds while sesquiterpene compounds were missing. A very low intensity relating to sesquiterpenes was recorded only by PTR-ToF-MS technique.

In-depth Investigation of the chemical profile of pelargonium odoratissimum (L.) L’Hér. Hydrolate by SPME-GC/MS, GC/MS,LVI-GC/MS and PTR-Tof-MS techniques / Taiti, Cosimo; Vinciguerra, Vittorio; Mollica Graziano, Monica; Masi, Elisa; Garzoli, Stefania. - In: CHEMOSENSORS. - ISSN 2227-9040. - 13:(2025), pp. 1-14. [10.3390/chemosensors13090325]

In-depth Investigation of the chemical profile of pelargonium odoratissimum (L.) L’Hér. Hydrolate by SPME-GC/MS, GC/MS,LVI-GC/MS and PTR-Tof-MS techniques

Stefania Garzoli
Ultimo
2025

Abstract

Hydrolates are aromatic aqueous solutions saturated with volatile water-soluble compounds of essential oil. Despite their potential, hydrolates remain less explored than essential oils. In this work, the hydrolate of Pelargonium odoratissimum (L.) L’Hér. has been analyzed by multiple analytical techniques in order to describe its chemical composition. Headspace (HS-) and Direct Immersion-Solid Phase Microextraction-Gas Chromatography/ Mass spectrometry (DI-SPME-GC/MS) and Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) were employed to reveal the VOC emission from the hydrolate. Further, a direct injection of the pure hydrolate and of the hydrolate after extraction with hexane was performed by Large-Volume Injection Gas Chromatography/Mass Spectrometry (LVI-GC/MS) and GC/MS. The results obtained by HS- and DI-SPMEGC/ MS highlighted a nearly overlapping chemical profile with linalool, isomenthone, and α-terpineol as the main volatiles. On the other hand, analysis of the hydrolate by GC/MS after solvent extraction revealed a lower overall number of compounds but allowed the detection of thujone and cis-linalool oxide. In comparison, LVI-GC/MS was the technique that allowed the identification of a higher number of volatiles with citronellol, linalool, and α-terpineol as the principal compounds. Finally, PTR-ToF-MS was a fundamental approach to quantify and evaluate total terpene emissions from this complex matrix starting from low-molecular-weight compounds such as acetylene, methanol, acetaldehyde, acetone, and ethanol, which were the most abundant. Among the detected compounds, dimethyl sulfide and small amounts of dimethyl-furan and 2-butylfuran were also identified. Overall, the findings showed that the hydrolate was rich in monoterpene compounds while sesquiterpene compounds were missing. A very low intensity relating to sesquiterpenes was recorded only by PTR-ToF-MS technique.
2025
chemical analysis; mass spectrometry; gas chromatography; secondary metabolites; volatiles
01 Pubblicazione su rivista::01a Articolo in rivista
In-depth Investigation of the chemical profile of pelargonium odoratissimum (L.) L’Hér. Hydrolate by SPME-GC/MS, GC/MS,LVI-GC/MS and PTR-Tof-MS techniques / Taiti, Cosimo; Vinciguerra, Vittorio; Mollica Graziano, Monica; Masi, Elisa; Garzoli, Stefania. - In: CHEMOSENSORS. - ISSN 2227-9040. - 13:(2025), pp. 1-14. [10.3390/chemosensors13090325]
File allegati a questo prodotto
File Dimensione Formato  
Garzoli_In-depth-investigation_2025.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1744742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact