The current gold standard for the study of human movement is the marker-based motion capture system that offers high precision but constrained by costs and controlled environments. Markerless pose estimation systems emerge as ecological alternatives, allowing unobtrusive data acquisition in natural settings. This study compares the performance of two popular markerless systems, OpenPose (OP) and DeepLabCut (DLC), in assessing locomotion. Forty healthy subjects walked along a 5 m walkway equipped with four force platforms and a camera. Gait parameters were obtained using OP “BODY_25” Pre-Trained model (OPPT), DLC “Model Zoo full_human” Pre-Trained model (DLCPT) and DLC Custom-Trained model (DLCCT), then compared with those acquired from the force platforms as reference system. Our results showed that DLCCT outperformed DLCPT and OPPT, highlighting the importance of leveraging DeepLabCut transfer learning to enhance the pose estimation performance with a custom-trained neural networks. Moreover, DLCCT, with the implementation of the DLC refinement function, offers the most promising markerless pose estimation solution for evaluating locomotion. Therefore, our data provide insights into the DLC training and refinement processes required to achieve optimal performance. This study proposes perspectives for clinicians and practitioners seeking accurate low-cost methods for movement assessment beyond laboratory settings.

DeepLabCut custom-trained model and the refinement function for gait analysis / Panconi, Giulia; Grasso, Stefano; Guarducci, Sara; Mucchi, Lorenzo; Minciacchi, Diego; Bravi, Riccardo. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 15:1(2025). [10.1038/s41598-025-85591-1]

DeepLabCut custom-trained model and the refinement function for gait analysis

Grasso, Stefano
Secondo
;
2025

Abstract

The current gold standard for the study of human movement is the marker-based motion capture system that offers high precision but constrained by costs and controlled environments. Markerless pose estimation systems emerge as ecological alternatives, allowing unobtrusive data acquisition in natural settings. This study compares the performance of two popular markerless systems, OpenPose (OP) and DeepLabCut (DLC), in assessing locomotion. Forty healthy subjects walked along a 5 m walkway equipped with four force platforms and a camera. Gait parameters were obtained using OP “BODY_25” Pre-Trained model (OPPT), DLC “Model Zoo full_human” Pre-Trained model (DLCPT) and DLC Custom-Trained model (DLCCT), then compared with those acquired from the force platforms as reference system. Our results showed that DLCCT outperformed DLCPT and OPPT, highlighting the importance of leveraging DeepLabCut transfer learning to enhance the pose estimation performance with a custom-trained neural networks. Moreover, DLCCT, with the implementation of the DLC refinement function, offers the most promising markerless pose estimation solution for evaluating locomotion. Therefore, our data provide insights into the DLC training and refinement processes required to achieve optimal performance. This study proposes perspectives for clinicians and practitioners seeking accurate low-cost methods for movement assessment beyond laboratory settings.
2025
Deep learning; DeepLabCut; Gait Analysis; OpenPose; Pose estimation; Video analysis
01 Pubblicazione su rivista::01a Articolo in rivista
DeepLabCut custom-trained model and the refinement function for gait analysis / Panconi, Giulia; Grasso, Stefano; Guarducci, Sara; Mucchi, Lorenzo; Minciacchi, Diego; Bravi, Riccardo. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 15:1(2025). [10.1038/s41598-025-85591-1]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1744492
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact