We prove that the kernel of the evaluation morphism of global sections — namely the syzygy bundle — of a sufficiently ample line bundle on an abelian variety is stable. This settles a conjecture of Ein–Lazarsfeld–Mustopa, in the case of abelian varieties.
Stability of syzygy bundles on abelian varieties / Caucci, F.; Lahoz, M.. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 53:4(2021), pp. 1030-1036. [10.1112/blms.12481]
Stability of syzygy bundles on abelian varieties
Caucci F.;
2021
Abstract
We prove that the kernel of the evaluation morphism of global sections — namely the syzygy bundle — of a sufficiently ample line bundle on an abelian variety is stable. This settles a conjecture of Ein–Lazarsfeld–Mustopa, in the case of abelian varieties.File allegati a questo prodotto
| File | Dimensione | Formato | |
|---|---|---|---|
|
Caucci_Stability_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
246.48 kB
Formato
Adobe PDF
|
246.48 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


