We prove that the kernel of the evaluation morphism of global sections — namely the syzygy bundle — of a sufficiently ample line bundle on an abelian variety is stable. This settles a conjecture of Ein–Lazarsfeld–Mustopa, in the case of abelian varieties.

Stability of syzygy bundles on abelian varieties / Caucci, F.; Lahoz, M.. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 53:4(2021), pp. 1030-1036. [10.1112/blms.12481]

Stability of syzygy bundles on abelian varieties

Caucci F.;
2021

Abstract

We prove that the kernel of the evaluation morphism of global sections — namely the syzygy bundle — of a sufficiently ample line bundle on an abelian variety is stable. This settles a conjecture of Ein–Lazarsfeld–Mustopa, in the case of abelian varieties.
2021
stability; kernel bundle; syzygy bundle; abelian varieties
01 Pubblicazione su rivista::01a Articolo in rivista
Stability of syzygy bundles on abelian varieties / Caucci, F.; Lahoz, M.. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 53:4(2021), pp. 1030-1036. [10.1112/blms.12481]
File allegati a questo prodotto
File Dimensione Formato  
Caucci_Stability_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 246.48 kB
Formato Adobe PDF
246.48 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1744230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact