We show how a natural constant introduced by Jiang and Pareschi for a polarized abelian variety encodes information about the syzygies of the section ring of the polarization. As a particular case this gives a quick and characteristic-free proof of Lazarsfeld’s conjecture on syzygies of abelian varieties, originally proved by Pareschi in characteristic zero.

The basepoint-freeness threshold and syzygies of abelian varieties / Caucci, F.. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 14:4(2020), pp. 947-960. [10.2140/ant.2020.14.947]

The basepoint-freeness threshold and syzygies of abelian varieties

Caucci F.
2020

Abstract

We show how a natural constant introduced by Jiang and Pareschi for a polarized abelian variety encodes information about the syzygies of the section ring of the polarization. As a particular case this gives a quick and characteristic-free proof of Lazarsfeld’s conjecture on syzygies of abelian varieties, originally proved by Pareschi in characteristic zero.
2020
Abelian varieties; Fourier–Mukai transform; Syzygies
01 Pubblicazione su rivista::01a Articolo in rivista
The basepoint-freeness threshold and syzygies of abelian varieties / Caucci, F.. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 14:4(2020), pp. 947-960. [10.2140/ant.2020.14.947]
File allegati a questo prodotto
File Dimensione Formato  
Caucci_basepoint-freeness_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1744228
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact