We show how a natural constant introduced by Jiang and Pareschi for a polarized abelian variety encodes information about the syzygies of the section ring of the polarization. As a particular case this gives a quick and characteristic-free proof of Lazarsfeld’s conjecture on syzygies of abelian varieties, originally proved by Pareschi in characteristic zero.
The basepoint-freeness threshold and syzygies of abelian varieties / Caucci, F.. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 14:4(2020), pp. 947-960. [10.2140/ant.2020.14.947]
The basepoint-freeness threshold and syzygies of abelian varieties
Caucci F.
2020
Abstract
We show how a natural constant introduced by Jiang and Pareschi for a polarized abelian variety encodes information about the syzygies of the section ring of the polarization. As a particular case this gives a quick and characteristic-free proof of Lazarsfeld’s conjecture on syzygies of abelian varieties, originally proved by Pareschi in characteristic zero.File allegati a questo prodotto
| File | Dimensione | Formato | |
|---|---|---|---|
|
Caucci_basepoint-freeness_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


