In this paper, we consider traces at initial times for functions with mixed time-space smoothness. Such results are often needed in the theory of evolution equations. Our result extends and unifies many previous results. Our main improvement is that we can allow general interpolation couples. The abstract results are applied to regularity problems for fractional evolution equations and stochastic evolution equations, where uniform trace estimates on the half-line are shown.

On the trace embedding and its applications to evolution equations / Agresti, Antonio; Lindemulder, Nick; Veraar, Mark. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - 296:4(2023), pp. 1319-1350. [10.1002/mana.202100192]

On the trace embedding and its applications to evolution equations

Agresti, Antonio;
2023

Abstract

In this paper, we consider traces at initial times for functions with mixed time-space smoothness. Such results are often needed in the theory of evolution equations. Our result extends and unifies many previous results. Our main improvement is that we can allow general interpolation couples. The abstract results are applied to regularity problems for fractional evolution equations and stochastic evolution equations, where uniform trace estimates on the half-line are shown.
2023
anisotropic function spaces; Besov spaces; Bessel-potential spaces; integral equations; Sobolev spaces; stochastic maximal regularity; traces; Triebel–Lizorkin spaces; weighted function spaces
01 Pubblicazione su rivista::01a Articolo in rivista
On the trace embedding and its applications to evolution equations / Agresti, Antonio; Lindemulder, Nick; Veraar, Mark. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - 296:4(2023), pp. 1319-1350. [10.1002/mana.202100192]
File allegati a questo prodotto
File Dimensione Formato  
Agresti_On-the-trace-embedding_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 438.33 kB
Formato Adobe PDF
438.33 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1744108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact