In this paper, we propose a technique to detect and localize inpainting created by diffusion-based machine learning models. We begin by compiling a dataset of inpainted images, which we then use to train a convolutional neural network (CNN) for this task. Our method achieves high precision, recall, F1-score, and Intersection over Union (IoU) in detecting and localizing inpainting. It is versatile and can be applied to various real-life scenarios.

InpaintLocalizer: Detection and Localization of Inpainting Generated by Diffusion-Based Machine Learning Models / De Magistris, G.; Pinto, M. L.; Najgebauer, P.; Scherer, R.; Napoli, C.. - 15165:(2025), pp. 245-257. ( 23rd International Conference on Artificial Intelligence and Soft Computing, ICAISC 2024 Zakopane; pol ) [10.1007/978-3-031-84356-3_20].

InpaintLocalizer: Detection and Localization of Inpainting Generated by Diffusion-Based Machine Learning Models

Napoli C.
Ultimo
Supervision
2025

Abstract

In this paper, we propose a technique to detect and localize inpainting created by diffusion-based machine learning models. We begin by compiling a dataset of inpainted images, which we then use to train a convolutional neural network (CNN) for this task. Our method achieves high precision, recall, F1-score, and Intersection over Union (IoU) in detecting and localizing inpainting. It is versatile and can be applied to various real-life scenarios.
2025
23rd International Conference on Artificial Intelligence and Soft Computing, ICAISC 2024
DALL-E 2; Inpainting Detection; Inpainting Localization; Midjourney; Stable Diffusion
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
InpaintLocalizer: Detection and Localization of Inpainting Generated by Diffusion-Based Machine Learning Models / De Magistris, G.; Pinto, M. L.; Najgebauer, P.; Scherer, R.; Napoli, C.. - 15165:(2025), pp. 245-257. ( 23rd International Conference on Artificial Intelligence and Soft Computing, ICAISC 2024 Zakopane; pol ) [10.1007/978-3-031-84356-3_20].
File allegati a questo prodotto
File Dimensione Formato  
DeMagistris_InpaintLocalizer_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.93 MB
Formato Adobe PDF
2.93 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1743704
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact