Clouds provide an illusion of an infinite amount of resources and enable elastic services and applications that are capable to scale up and down (grow and shrink by requesting and releasing resources) in response to changes in its environment, workload, and Quality of Service (QoS) requirements. Elasticity allows to achieve required QoS at a minimal cost in a Cloud environment with its pay-as-you-go pricing model. In this paper, we present our experience in designing a feedback elastically controller for a key-value store. The goal of our research is to investigate the feasibility of the control theoretic approach to the automation of elasticity of Cloud-based key-value stores. We describe design steps necessary to build a feedback controller for a real system, namely Voldemort, which we use as a case study in this work. The design steps include defining touchpoints (sensors and actuators), system identification, and controller design. We have designed, developed, and implemented a prototype of the feedback elasticity controller for Voldemort. Our initial evaluation results show the feasibility of using feedback control to automate elasticity of distributed key-value stores.
Elasticity controller for Cloud-based key-value stores / Arman, Ala; Al-Shishtawy, Ahmad; Vlassov, Vladimir. - (2012). ( 18th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2012 Singapore ) [10.1109/ICPADS.2012.45].
Elasticity controller for Cloud-based key-value stores
Ala Arman
Primo
;
2012
Abstract
Clouds provide an illusion of an infinite amount of resources and enable elastic services and applications that are capable to scale up and down (grow and shrink by requesting and releasing resources) in response to changes in its environment, workload, and Quality of Service (QoS) requirements. Elasticity allows to achieve required QoS at a minimal cost in a Cloud environment with its pay-as-you-go pricing model. In this paper, we present our experience in designing a feedback elastically controller for a key-value store. The goal of our research is to investigate the feasibility of the control theoretic approach to the automation of elasticity of Cloud-based key-value stores. We describe design steps necessary to build a feedback controller for a real system, namely Voldemort, which we use as a case study in this work. The design steps include defining touchpoints (sensors and actuators), system identification, and controller design. We have designed, developed, and implemented a prototype of the feedback elasticity controller for Voldemort. Our initial evaluation results show the feasibility of using feedback control to automate elasticity of distributed key-value stores.| File | Dimensione | Formato | |
|---|---|---|---|
|
Arman_Elasticity-Controller_2012.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
557.3 kB
Formato
Adobe PDF
|
557.3 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


