In the era of noisy intermediate-scale quantum computers, variational quantum algorithms are promising approaches for solving optimization tasks by training parameterized quantum circuits with the aid of classical routines informed by quantum measurements. In this context, photonic platforms based on reconfigurable integrated optics are an ideal candidate for implementing these algorithms. Among various techniques to train variational circuits, the parameter shift rule enables the exact calculation of cost function derivatives efficiently, facilitating gradient descent-based optimization. In this paper, we derive a formulation of the parameter shift rule for computing derivatives and integrals tailored to reconfigurable optical linear circuits and based on the Boson Sampling paradigm. This allows us to naturally embed common types of experimental noise, such as partial distinguishability and mixedness of the states, thus obtaining a resilient approach. Finally, we employ the developed approach to experimentally test variational algorithms with single-photon states processed in a reconfigurable six-mode universal integrated interferometer. Specifically, we apply the photonic parameter shift rules to the variational implementation, on a photonic platform, of both an eigensolver and a Universal-not gate.

Variational approach to photonic quantum circuits via the parameter shift rule / Hoch, Francesco; Rodari, Giovanni; Giordani, Taira; Perret, Paul; Spagnolo, Nicolò; Carvacho, Gonzalo; Pentangelo, Ciro; Piacentini, Simone; Crespi, Andrea; Ceccarelli, Francesco; Osellame, Roberto; Sciarrino, Fabio. - In: PHYSICAL REVIEW RESEARCH. - ISSN 2643-1564. - 7:2(2025), pp. 1-13. [10.1103/physrevresearch.7.023227]

Variational approach to photonic quantum circuits via the parameter shift rule

Hoch, Francesco;Rodari, Giovanni;Giordani, Taira;Spagnolo, Nicolò;Carvacho, Gonzalo;Sciarrino, Fabio
2025

Abstract

In the era of noisy intermediate-scale quantum computers, variational quantum algorithms are promising approaches for solving optimization tasks by training parameterized quantum circuits with the aid of classical routines informed by quantum measurements. In this context, photonic platforms based on reconfigurable integrated optics are an ideal candidate for implementing these algorithms. Among various techniques to train variational circuits, the parameter shift rule enables the exact calculation of cost function derivatives efficiently, facilitating gradient descent-based optimization. In this paper, we derive a formulation of the parameter shift rule for computing derivatives and integrals tailored to reconfigurable optical linear circuits and based on the Boson Sampling paradigm. This allows us to naturally embed common types of experimental noise, such as partial distinguishability and mixedness of the states, thus obtaining a resilient approach. Finally, we employ the developed approach to experimentally test variational algorithms with single-photon states processed in a reconfigurable six-mode universal integrated interferometer. Specifically, we apply the photonic parameter shift rules to the variational implementation, on a photonic platform, of both an eigensolver and a Universal-not gate.
2025
integrated photonics; variational quantum algorithms; parameter shift rule
01 Pubblicazione su rivista::01a Articolo in rivista
Variational approach to photonic quantum circuits via the parameter shift rule / Hoch, Francesco; Rodari, Giovanni; Giordani, Taira; Perret, Paul; Spagnolo, Nicolò; Carvacho, Gonzalo; Pentangelo, Ciro; Piacentini, Simone; Crespi, Andrea; Ceccarelli, Francesco; Osellame, Roberto; Sciarrino, Fabio. - In: PHYSICAL REVIEW RESEARCH. - ISSN 2643-1564. - 7:2(2025), pp. 1-13. [10.1103/physrevresearch.7.023227]
File allegati a questo prodotto
File Dimensione Formato  
Hoch_Variational-approach_2025.pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 921.42 kB
Formato Adobe PDF
921.42 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1743488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact