Machine Translation (MT) evaluation metrics assess translation quality automatically. Recently, researchers have employed MT metrics for various new use cases, such as data filtering and translation re-ranking. However, most MT metrics return assessments as scalar scores that are difficult to interpret, posing a challenge to making informed design choices. Moreover, MT metrics’ capabilities have historically been evaluated using correlation with human judgment, which, despite its efficacy, falls short of providing intuitive insights into metric performance, especially in terms of new metric use cases. To address these issues, we introduce an interpretable evaluation framework for MT metrics. Within this framework, we evaluate metrics in two scenarios that serve as proxies for the data filtering and translation re-ranking use cases. Furthermore, by measuring the performance of MT metrics using Precision, Recall, and F-score, we offer clearer insights into their capabilities than correlation with human judgments. Finally, we raise concerns regarding the reliability of manually curated data following the Direct Assessments+Scalar Quality Metrics (DA+SQM) guidelines, reporting a notably low agreement with Multidimensional Quality Metrics (MQM) annotations.

Beyond Correlation: Interpretable Evaluation of Machine Translation Metrics / Perrella, Stefano; Proietti, Lorenzo; Huguet Cabot, PERE-LLUIS; Barba, Edoardo; Navigli, Roberto. - (2024), pp. 20689-20714. ( Association for Computational Linguistics Miami, Florida ).

Beyond Correlation: Interpretable Evaluation of Machine Translation Metrics

Stefano Perrella;Lorenzo Proietti;Pere-Lluis Huguet Cabot;Edoardo Barba;Roberto Navigli
2024

Abstract

Machine Translation (MT) evaluation metrics assess translation quality automatically. Recently, researchers have employed MT metrics for various new use cases, such as data filtering and translation re-ranking. However, most MT metrics return assessments as scalar scores that are difficult to interpret, posing a challenge to making informed design choices. Moreover, MT metrics’ capabilities have historically been evaluated using correlation with human judgment, which, despite its efficacy, falls short of providing intuitive insights into metric performance, especially in terms of new metric use cases. To address these issues, we introduce an interpretable evaluation framework for MT metrics. Within this framework, we evaluate metrics in two scenarios that serve as proxies for the data filtering and translation re-ranking use cases. Furthermore, by measuring the performance of MT metrics using Precision, Recall, and F-score, we offer clearer insights into their capabilities than correlation with human judgments. Finally, we raise concerns regarding the reliability of manually curated data following the Direct Assessments+Scalar Quality Metrics (DA+SQM) guidelines, reporting a notably low agreement with Multidimensional Quality Metrics (MQM) annotations.
2024
Association for Computational Linguistics
machine translation; evaluation; meta-evaluation; mt metrics;
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Beyond Correlation: Interpretable Evaluation of Machine Translation Metrics / Perrella, Stefano; Proietti, Lorenzo; Huguet Cabot, PERE-LLUIS; Barba, Edoardo; Navigli, Roberto. - (2024), pp. 20689-20714. ( Association for Computational Linguistics Miami, Florida ).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1743271
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact