This paper presents a model predictive control (MPC) algorithm for optimizing the energy operations of a smart beehive equipped with a photovoltaic panel, an electrical storage, and a vision system for automatic detection of Varroa-infested bees. A camera at the entrance of the beehive monitors the entering and exiting bees, and image processing algorithms are used to detect the presence of Varroa. The goal of the proposed energy management algorithm is to maximize the number of monitored bees (image acquisition and processing consume energy), while ensuring that the beehive does not run out of energy, so that monitoring can be ensured over a prolonged time. Simulation results on real data show that the proposed controller effectively manages the beehive, ensuring the achievement of the above objectives.

A Smart Beehive Energy Management System for Supporting Automatic Varroa Detection / De Santis, Emanuele; Atanasious, Mohab M. H.; Liberati, Francesco; Di Giorgio, Alessandro. - (2025), pp. 429-434. (Intervento presentato al convegno 33rd Mediterranean Conference on Control and Automation (MED) tenutosi a Tangier, Morocco) [10.1109/med64031.2025.11073396].

A Smart Beehive Energy Management System for Supporting Automatic Varroa Detection

Emanuele De Santis;Mohab M. H. Atanasious
;
Francesco Liberati;Alessandro Di Giorgio
2025

Abstract

This paper presents a model predictive control (MPC) algorithm for optimizing the energy operations of a smart beehive equipped with a photovoltaic panel, an electrical storage, and a vision system for automatic detection of Varroa-infested bees. A camera at the entrance of the beehive monitors the entering and exiting bees, and image processing algorithms are used to detect the presence of Varroa. The goal of the proposed energy management algorithm is to maximize the number of monitored bees (image acquisition and processing consume energy), while ensuring that the beehive does not run out of energy, so that monitoring can be ensured over a prolonged time. Simulation results on real data show that the proposed controller effectively manages the beehive, ensuring the achievement of the above objectives.
2025
33rd Mediterranean Conference on Control and Automation (MED)
photovoltaic systems; prediction algorithms; real-time systems; batteries; optimization; predictive control},
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
A Smart Beehive Energy Management System for Supporting Automatic Varroa Detection / De Santis, Emanuele; Atanasious, Mohab M. H.; Liberati, Francesco; Di Giorgio, Alessandro. - (2025), pp. 429-434. (Intervento presentato al convegno 33rd Mediterranean Conference on Control and Automation (MED) tenutosi a Tangier, Morocco) [10.1109/med64031.2025.11073396].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1743032
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact