This paper presents an original application of physics-informed neural networks (PINN) to the problem of computing the critical clearing time in power system rotor-angle transient stability studies. We first analyze the accuracy of a properly trained PINN in terms of its ability to correctly reproduce the dynamics of a generator-infinite bus system evolving from initial conditions next to the boundary of the region of attraction of its unique stable equilibrium. We then integrate the PINN in a mixed-integer linear programming problem that, assuming no prior knowledge about the region of attraction, provides the critical clearing time of the system and, as a by-product, the system trajectories characterizing the full fault and clearing process. The simulation results are presented to validate the proposed approach.

Critical Clearing Time Computation in Power System Transient Stability Analysis: a Physics-Informed Neural Network approach / De Santis, Emanuele; Atanasious, Mohab M. H.; Liberati, Francesco; Di Giorgio, Alessandro. - (2025), pp. 648-653. ( 33rd Mediterranean Conference on Control and Automation (MED) Tangier, Morocco ) [10.1109/med64031.2025.11073255].

Critical Clearing Time Computation in Power System Transient Stability Analysis: a Physics-Informed Neural Network approach

Emanuele De Santis
;
Mohab M. H. Atanasious;Francesco Liberati;Alessandro Di Giorgio
2025

Abstract

This paper presents an original application of physics-informed neural networks (PINN) to the problem of computing the critical clearing time in power system rotor-angle transient stability studies. We first analyze the accuracy of a properly trained PINN in terms of its ability to correctly reproduce the dynamics of a generator-infinite bus system evolving from initial conditions next to the boundary of the region of attraction of its unique stable equilibrium. We then integrate the PINN in a mixed-integer linear programming problem that, assuming no prior knowledge about the region of attraction, provides the critical clearing time of the system and, as a by-product, the system trajectories characterizing the full fault and clearing process. The simulation results are presented to validate the proposed approach.
2025
33rd Mediterranean Conference on Control and Automation (MED)
power system dynamics; neural networks; power system stability; stability analysis; trajectory; transient analysis
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Critical Clearing Time Computation in Power System Transient Stability Analysis: a Physics-Informed Neural Network approach / De Santis, Emanuele; Atanasious, Mohab M. H.; Liberati, Francesco; Di Giorgio, Alessandro. - (2025), pp. 648-653. ( 33rd Mediterranean Conference on Control and Automation (MED) Tangier, Morocco ) [10.1109/med64031.2025.11073255].
File allegati a questo prodotto
File Dimensione Formato  
DeSantis_Critical-Clearing-Time_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 278.2 kB
Formato Adobe PDF
278.2 kB Adobe PDF   Contatta l'autore
DeSantis_postprint_Critical-Clearing-Time_2025.pdf

accesso aperto

Note: DOI: 10.1109/MED64031.2025.11073255
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 340.19 kB
Formato Adobe PDF
340.19 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1743030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact