The paper is devoted to the analysis of the global well-posedness and the interior regularity of the 2D Navier–Stokes equations with inhomogeneous stochastic boundary conditions. The noise, white in time and coloured in space, can be interpreted as the physical law describing the driving mechanism on the atmosphere–ocean interface, i.e. as a balance of the shear stress of the ocean and the horizontal wind force.

Global well-posedness and interior regularity of 2D Navier–Stokes equations with stochastic boundary conditions / Agresti, A.; Luongo, E.. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 390:2(2024), pp. 2727-2766. [10.1007/s00208-024-02812-0]

Global well-posedness and interior regularity of 2D Navier–Stokes equations with stochastic boundary conditions

Agresti A.
Primo
;
2024

Abstract

The paper is devoted to the analysis of the global well-posedness and the interior regularity of the 2D Navier–Stokes equations with inhomogeneous stochastic boundary conditions. The noise, white in time and coloured in space, can be interpreted as the physical law describing the driving mechanism on the atmosphere–ocean interface, i.e. as a balance of the shear stress of the ocean and the horizontal wind force.
2024
60H15; 76D03 (47A60, 35J25)
01 Pubblicazione su rivista::01a Articolo in rivista
Global well-posedness and interior regularity of 2D Navier–Stokes equations with stochastic boundary conditions / Agresti, A.; Luongo, E.. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 390:2(2024), pp. 2727-2766. [10.1007/s00208-024-02812-0]
File allegati a questo prodotto
File Dimensione Formato  
Agresti_Global_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 646.05 kB
Formato Adobe PDF
646.05 kB Adobe PDF   Contatta l'autore
Agresti_preprint_Global_2024.pdf.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1742108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact