This paper presents a novel fuzzy clustering technique designed specifically for count data, referred to as the Fuzzy C-medoids algorithm based on Total Variation Distance. We evaluate its performance against a benchmark relying on Shannon divergence, commonly employed in scenarios involving discrete probability distributions, through simulation analysis. A comprehensive evaluation of the proposed approach’s effectiveness is carried out, revealing promising results. The study’s findings emphasize the potential of the proposed fuzzy method, particularly in scenarios where discrete probability distributions are involved.

Copula-Based Fuzzy Clustering of Count Data with Total Variation Distance / D'Urso, Pierpaolo; De Giovanni, Livia; Federico, Lorenzo; Vitale, Vincenzina. - (2024), pp. 126-133. (Intervento presentato al convegno International Conference on Soft Methods in Probability and Statistics tenutosi a Salzburg (Austria)) [10.1007/978-3-031-65993-5_15].

Copula-Based Fuzzy Clustering of Count Data with Total Variation Distance

D'Urso, Pierpaolo;Vitale, Vincenzina
2024

Abstract

This paper presents a novel fuzzy clustering technique designed specifically for count data, referred to as the Fuzzy C-medoids algorithm based on Total Variation Distance. We evaluate its performance against a benchmark relying on Shannon divergence, commonly employed in scenarios involving discrete probability distributions, through simulation analysis. A comprehensive evaluation of the proposed approach’s effectiveness is carried out, revealing promising results. The study’s findings emphasize the potential of the proposed fuzzy method, particularly in scenarios where discrete probability distributions are involved.
2024
International Conference on Soft Methods in Probability and Statistics
Total Variation Distance; Fuzzy C-medoids; Count data.
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Copula-Based Fuzzy Clustering of Count Data with Total Variation Distance / D'Urso, Pierpaolo; De Giovanni, Livia; Federico, Lorenzo; Vitale, Vincenzina. - (2024), pp. 126-133. (Intervento presentato al convegno International Conference on Soft Methods in Probability and Statistics tenutosi a Salzburg (Austria)) [10.1007/978-3-031-65993-5_15].
File allegati a questo prodotto
File Dimensione Formato  
Salisburgo.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 287.53 kB
Formato Adobe PDF
287.53 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1741925
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact